9.函數(shù)y=log0.5(x2-4)+$\frac{2}{x-5}$的定義域是{x|x<-2或x>2且x≠5}.

分析 由對數(shù)式的真數(shù)大于0,分式的分母不為0聯(lián)立不等式組求得答案.

解答 解:由$\left\{\begin{array}{l}{{x}^{2}-4>0}\\{x-5≠0}\end{array}\right.$,解得x<-2或x>2且x≠5.
∴函數(shù)y=log0.5(x2-4)+$\frac{2}{x-5}$的定義域是{x|x<-2或x>2且x≠5}.
故答案為:{x|x<-2或x>2且x≠5}.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正四面體棱長均為4,求正四面體的高與斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)F(1,0),點(diǎn)P在圓E:(x+1)2+y2=16上,線段PF的垂直平分線交PE于點(diǎn)M.記點(diǎn)M的軌跡為曲線Γ.過x軸上的定點(diǎn)Q(m,0)(m>2)的直線l交曲線Γ于A,B兩點(diǎn).
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,證明:直線A′B恒過一個(gè)定點(diǎn)S,且|OS|•|OQ|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax2+b(lnx-x),已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直.
(1)求a的值;
(2)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的解析式:
(1)已知f(x)是一次函數(shù),并且f[f(x)]=4x+3,求f(x);
(2)已知f(2x+1)=4x2+8x+3,求f(x);
(3)已知f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-3,求f(x);
(4)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,分別過橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)左右焦點(diǎn)F1,F(xiàn)2的兩條不同動直線l1,l2相交于P點(diǎn),l1,l2與橢圓E分別交于A,B與C,D不同四點(diǎn),直線OA,OB,OC,OD的斜率k1,k2,k3,k4滿足k1+k2=k3+k4,已知當(dāng)l1與x軸重合時(shí),|AB|=4,|CD|=3.
(1)求橢圓E的方程;
(2)是否存在定點(diǎn)M,N,使得|PM|+|PN|為定值,若存在,求出M,N點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a,b∈R,且對一切x≤0,不等式(ax+2)(x2+2b)≤0恒成立,則a2-b的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若a2-a+2∈{0,2,4,2-a},則實(shí)數(shù)a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)在區(qū)間[-2,5]上的圖象如圖所示,則f(f(-1))=2.

查看答案和解析>>

同步練習(xí)冊答案