如圖,ABCD為正方形,PD⊥平面ABCD,EC∥PD,且AD=PD=2EC.

(Ⅰ)求證:BE//平面PDA;

(Ⅱ)求平面PBE與平面ABCD所成的二面角的余弦值;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(下列兩道題任選做一道,若兩道都做,則以第一道計分)
(1)正方體ABCD-A1B1C1D1中,M、N是棱BC、CD的中點,則異面直線AD1與MN所成的角為
60°
60°
度;
(2)如圖是表示一個正方體表面的一種平面展開圖,圖中的四條線段AB、CD、EF和GH在原正方體中相互異面的有
3
3
對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示為某風景區(qū)設計建造的一個休閑廣場,廣場的中間造型的平面圖是由兩個相同的矩形ABCD和EFGH構成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計劃在正方方形MNPQ上建一座“觀景花壇”,造價為每平方4100元,在四個相同的矩形上(圖中陰影部分)鋪石材地坪,價格為每平方110元,再在四個空角(如△DQH等)上鋪草坪,價格為每平方80元.設AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價的最小值及此時AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示為某風景區(qū)設計建造的一個休閑廣場,廣場的中間造型的平面圖是由兩個相同的矩形ABCD和EFGH構成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計劃在正方方形MNPQ上建一座“觀景花壇”,造價為每平方4100元,在四個相同的矩形上(圖中陰影部分)鋪石材地坪,價格為每平方110元,再在四個空角(如△DQH等)上鋪草坪,價格為每平方80元.設AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價的最小值及此時AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市新龍中學高一(上)第二次月考數(shù)學試卷(解析版) 題型:填空題

(下列兩道題任選做一道,若兩道都做,則以第一道計分)
(1)正方體ABCD-A1B1C1D1中,M、N是棱BC、CD的中點,則異面直線AD1與MN所成的角為    度;
(2)如圖是表示一個正方體表面的一種平面展開圖,圖中的四條線段AB、CD、EF和GH在原正方體中相互異面的有    對.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省無錫市高一(下)期末數(shù)學試卷(解析版) 題型:解答題

如圖所示為某風景區(qū)設計建造的一個休閑廣場,廣場的中間造型的平面圖是由兩個相同的矩形ABCD和EFGH構成對稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計劃在正方方形MNPQ上建一座“觀景花壇”,造價為每平方4100元,在四個相同的矩形上(圖中陰影部分)鋪石材地坪,價格為每平方110元,再在四個空角(如△DQH等)上鋪草坪,價格為每平方80元.設AD長為xm,DQ長為ym.
(I)試找出x與y滿足的等量關系式;
(Ⅱ)若該廣場的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場的總造價的最小值及此時AD的長.

查看答案和解析>>

同步練習冊答案