設(shè)f(x)=px-
p
x
-2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=
2e
x
,且p>0,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.
(I)由 f(x)=px-
p
x
-2lnx,
f(x)=p+ 
p
x2
-
2
x
=
px2-2x+p
x2
.…(3分)
要使f(x)在其定義域(0,+∞)內(nèi)為單調(diào)增函數(shù),只需f′(x)≥0,
即px2-2x+p≥0在(0,+∞)內(nèi)恒成立,…(5分)
從而P≥1.…(7分)
(II)解法1:g(x)=
2e
x
在[1,e]上是減函數(shù),
所以[g(x)]min=g(e)=2,[g(x)]max=g(1)=2e,即g(x)∈[2,2e].
當(dāng)0<p<1時(shí),由x∈[1,e],得x-
1
x
≥ 0

f(x)=p(x-
1
x
)-2lnx<x-
1
x
-2lnx<2
,不合題意.…(10分)
當(dāng)P≥1時(shí),由(I)知f(x)在[1,e]連續(xù)遞增,f(1)=0<2,又g(x)在[1,e]上是減函數(shù),
∴原命題等價(jià)于[f(x)]max>[g(x)]min=2,x∈[1,e],…(12分)
[f(x) ]max=f(e)=p(e- 
1
e
) -2lne>2
,解得p>
4e
e2-1

綜上,p的取值范圍是(
4e
e2-1
,+∞).…(15分)
解法2:原命題等價(jià)于f(x)-g(x)>0在[1,e)上有解,
設(shè)F(x)=f(x)-g(x)=px-
p
x
-2lnx-
2e
x
,
F(x)=p+ 
p
x2
2
x
+
2e
x2

=
px2+p+2(e-x)
x2
>0

∴F(x)是增函數(shù),…(10分)
∴[F(x)]max=F(e)>0,解得p>
4e
e2-1
,
∴p的取值范圍是(
4e
e2-1
,+∞).…(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=px-
p
x
-2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=
2e
x
,且p>0,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=px-數(shù)學(xué)公式-2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=數(shù)學(xué)公式,且p>0,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)f(x)=px--2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=,且p>0,若在[1,e]上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省清遠(yuǎn)一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)f(x)=px--2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=,且p>0,若在[1,e]上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省湖州市部分地區(qū)高考適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)f(x)=px--2lnx.
(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)設(shè)g(x)=,且p>0,若在[1,e]上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案