7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.6

分析 由三視圖可知:該幾何體為上下兩部分組成,上面是一個橫放的三棱柱,下面是一個長方體.

解答 解:由三視圖可知:該幾何體為上下兩部分組成,上面是一個橫放的三棱柱,下面是一個長方體.
∴該幾何體的體積V=22×1+$\frac{1}{2}×2×1×2$=6.
故選:D.

點(diǎn)評 本題考查了長方體與三棱柱的三視圖、體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,3),點(diǎn)B的坐標(biāo)為(-1,-1),將直角坐標(biāo)平面沿x軸折成直二面角,則A,B兩點(diǎn)間的距離為$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,已知圓O1與圓O2相交于A,B兩點(diǎn),過點(diǎn)A作圓O1的切線交圓O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交圓O1,圓O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓x2+4y2=4的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正實數(shù)x,y滿足:x+y=xy,則x2+y2-4xy的最小值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=log2(x+1).
(Ⅰ)求函數(shù)f(x)在定義域R上的解析式;
(Ⅱ)解關(guān)于x的不等式f(2x-1)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個球的體積為$\frac{4}{3}π$,則該球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓${x^2}+\frac{y^2}{4}=1$,A、B是橢圓的左右頂點(diǎn),P是橢圓上不與A、B重合的一點(diǎn),PA、PB的傾斜角分別為α、β,則$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{{e}^{x}(x<0)}\end{array}\right.$,則f[f(-1)]=$\frac{1}{{e}^{2}}+1$.

查看答案和解析>>

同步練習(xí)冊答案