已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=5x-4,求函數(shù)f(x)的解析式;
(Ⅱ)當a>0時,討論函數(shù)f(x)的單調性.
【答案】分析:(1)先求函數(shù)f(x)的導數(shù),令f'(2)=5求出a的值,切點P(2,f(2))在函數(shù)f(x)和直線y=5x-4上,可求出b的值,最后得到答案.
(2)對f'(x)的解析式因式分解后討論可得答案.
解答:解:(Ⅰ)f'(x)=ax2-(a+1)x+1,
由導數(shù)的幾何意義得f'(2)=5,于是a=3.
由切點P(2,f(2))在直線y=5x-4上可知2+b=6,解得b=4.
所以函數(shù)f(x)的解析式為f(x)=x3-2x2+x+4.
(Ⅱ)
當0<a<1時,,函數(shù)f(x)在區(qū)間(-∞,1)及上為增函數(shù);
在區(qū)間上為減函數(shù);
當a=1時,,函數(shù)f(x)在區(qū)間(-∞,+∞)上為增函數(shù);
當a>1時,,函數(shù)f(x)在區(qū)間及(1,+∞)上為增函數(shù);
在區(qū)間上為減函數(shù).
點評:本題主要考查函數(shù)的單調性與其導函數(shù)的正負之間的關系,即當導函數(shù)大于0時原函數(shù)單調遞增,當導函數(shù)小于0時原函數(shù)單調遞減.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)(其中A、B、是實數(shù),且)的最小正周期是2,且當時,取得最大值2;

  (1)、求函數(shù)的表達式;

  (2)、在閉區(qū)間上是否存在的對稱軸?如果存在,求出其對稱軸的方程,

        若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽一中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市臨川二中高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a,b為常數(shù).
(1)當a=6,b=3時,求函數(shù)f(x)的單調遞增區(qū)間;
(2)若任取a∈[0,4],b∈[0,3],求函數(shù)f(x)在R上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年《龍門亮劍》高三數(shù)學(理科)一輪復習:第2章第10節(jié)(人教AB通用)(解析版) 題型:解答題

已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三上學期期末考試文科數(shù)學 題型:解答題

(本小題滿分12分)

已知函數(shù)(其中a,b為常數(shù)且)的反函數(shù)的圖象經(jīng)過點A(4,1)和B(16,3)。

(1)求a,b的值;

(2)若不等式上恒成立,求實數(shù)m的取值范圍。

 

 

查看答案和解析>>

同步練習冊答案