已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線的焦點,點M(
p2
,p
);
(1)設(shè)過F且斜率為1的直線L交拋物線C于A、B兩點,且|AB|=8,求拋物線的方程;
(2)過點M作斜率互為相反數(shù)的兩條直線,分別交拋物線C于除M之外的D、E兩點.求證:直線DE的斜率為定值.
分析:(1)根據(jù)拋物線方程求得拋物線的焦點坐標,進而根據(jù)點斜式求得直線的方程與拋物線方程聯(lián)立,消去y,根據(jù)韋達定理,結(jié)合拋物線的定義,即可求拋物線的方程;
(2)設(shè)出直線方程代入拋物線方程,求出D,E的坐標,即可證得結(jié)論.
解答:(1)解:拋物線焦點為(
p
2
,0),且斜率為1,則直線方程為y=x-
p
2

代入拋物線方程y2=2px得x2-3px+
p2
4
=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=3p
根據(jù)拋物線的定義可知|AB|=x1+
p
2
+x2+
p
2
=x1+x2+p=4p=8,∴p=2
∴拋物線的方程為y2=4x;
(2)證明:由(1)知M(1,2),設(shè)MD:x=my+1-2m,則ME:x=-my+1+2m
MD:x=my+1-2m,代入y2=4x,可得y2-4my-4+8m=0,∴y=2或y=4m-2,∴D(4m2-4m+1,4m-2)
同理E(4m2+4m+1,-4m-2)
∴直線DE的斜率為
4m-2+4m+2
4m2-4m+1-(4m2+4m+1)
=-1
點評:本題考查拋物線的標準方程,考查拋物線的定義,考查直線與拋物線的位置關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4且位于x軸上方的點. A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標;
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=(  )

查看答案和解析>>

同步練習(xí)冊答案