已知曲線W:
x2+y2
+|y|=1,則曲線W上的點(diǎn)到原點(diǎn)距離的最小值是( 。
A、
1
2
B、
2
2
C、2-
2
D、
2
-1
考點(diǎn):兩點(diǎn)間距離公式的應(yīng)用
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:化簡(jiǎn)方程
x2+y2
+|y|=1,得到x2=1-2|y|,作出曲線W的圖形,通過(guò)圖象觀察,即可得到到原點(diǎn)距離的最小值.
解答: 解:
x2+y2
+|y|=1即為
x2+y2
=1-|y|,
兩邊平方,可得x2+y2=1+y2-2|y|,
即有x2=1-2|y|,
作出曲線W的圖形,如右:
則由圖象可得,O與點(diǎn)(0,
1
2
)或(0,-
1
2
)的距離最小,且為
1
2

故選A.
點(diǎn)評(píng):本題考查曲線方程的化簡(jiǎn),考查兩點(diǎn)的距離公式的運(yùn)用,考查數(shù)形結(jié)合的思想方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)tan(π+α)=2,則
sin(α-π)+cos(π-α)
sin(π+α)-cos(π+α)
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1,0,),
b
=(0,1,1),
c
=(1,0,1),
d
=(1,0,-1),則其中共面的三個(gè)向量是( 。
A、
a
,
b
,
c
B、
a
,
b
,
d
C、
a
,
c
d
D、
b
,
c
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:(x-1)2+y2=1,求⊙C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線4x2-y2+64=0的一個(gè)焦點(diǎn)F到它的一條漸近線距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.動(dòng)圓M與兩圓都相切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:
x=m+
2
2
t
y=
2
2
t
(t是參數(shù)).
(Ⅰ) 若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=
14
,試求實(shí)數(shù)m值.
(Ⅱ) 設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長(zhǎng)與|MQ|的比等于x(x>o),則動(dòng)點(diǎn)M的軌跡為( 。
A、直線B、圓
C、直線或圓D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(0,1),
b
=(2,-1),
c
=(1,1),則(  )
A、(
a
-
b
)∥
c
B、(
a
-
b
)⊥
c
C、(
a
-
b
)•
c
>1
D、|
a
-
b
|=|
c
|

查看答案和解析>>

同步練習(xí)冊(cè)答案