全集U=R,集合M={x|4a-5<x<3a},N={x|-1<x<3},
(1)若a=
2
3
,求M∩N;
(2)若N⊆∁UM,求a的取值范圍.
考點:交集及其運算,集合的包含關系判斷及應用
專題:集合
分析:(1)將a的值代入M確定出M,求出兩集合的交集即可;
(2)由全集R與M,表示出M的補集,根據(jù)N為M補集的子集,確定出a的范圍即可.
解答: 解:(1)將a=
2
3
代入M得:M={x|-
7
3
<x<2},
∵N={x|-1<x<3},
∴M∩N={x|-1<x<2};
(2)∵∁UM={x|x≤4a-5或x≥4a},N={x|-1<x<3},且N⊆∁UM,
∴4a-5≥3或4a≤-1,
解得:a≥2或a≤-
1
4
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對邊,若a=1,且2cosC+c=2b,則△ABC的周長的取值范圍是(  )
A、(1,3]
B、[2,4]
C、(2,3]
D、[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+ax+b
x
(x≠0)是奇函數(shù),且滿足f(1)=f(4)
(1)求實數(shù)a,b的值;
(2)試指出函數(shù)的單調區(qū)間(不必證明),并用定義法證明函數(shù)f(x)在區(qū)間(0,2]的單調性;
(3)是否存在實數(shù)k同時滿足以下兩個條件:
①不等式f(x)+
k
2
>0對x∈(0,+∞)恒成立;
②方程f(x)=k在x∈[-6,-1]上有解.若存在,試求出實數(shù)k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在m(m≥2,m∈N+)個不同數(shù)的排列(P1,P2,…,Pm)中,若1≤i<j≤m時,Pi>Pj(即前面某數(shù)大于
后面某數(shù))則稱Pi與Pj構成一個逆序,一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù),例如排列(2,40,3,1)中有逆序“2與1”,“40與3”,“40與1”,“3與1”其逆序數(shù)等于4.
(1)求(1,3,40,2)的逆序數(shù);
(2)已知n+2(n∈N+)個不同數(shù)的排列(P1,P2,…,Pn+1,Pn+2)的逆序數(shù)是2.
(。┣螅≒n+2,Pn+1,…,P2,P1)的逆序數(shù)an
(ⅱ)令bn=
an+2
an+1+2
+
an+1+2
an+2
,證明2n+
1
2
≤b1+b2+…+bn<2n+
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(2x+1-
3
x
)
元;
(1)要使生產(chǎn)產(chǎn)品2小時獲得利潤不低于1200元,求x的取值范圍;
(2)要使生產(chǎn)120千克該產(chǎn)品獲得的利潤最大,問:甲廠應該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:y2=2px(p>0)的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.
(1)若p=2,求線段AF中點M的軌跡方程;
(2)若直線AB的斜率為2,當焦點為F(
1
2
,0)時,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為
x=
1
2
+
3
2
t
y=
1
2
+
1
2
t
(t為參數(shù)),點A的極坐標為(
2
2
,
π
4
),設直線l與圓C交于點P、Q.
(1)寫出圓C的直角坐標方程;
(2)求|AP|•|AQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊在直線y=
3
x上,求α的正弦,余弦的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)(-
1
2
+
3
2
i)3的值是
 

查看答案和解析>>

同步練習冊答案