11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-\frac{1}{x},}&{x>0}\\{{x^2},}&{x≤0}\end{array}}$,則f(2)+f(-2)=(  )
A.0B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

分析 由函數(shù)性質(zhì)分別求出f(2),f(-2),由此能求出f(2)+f(-2)的值.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{-\frac{1}{x},}&{x>0}\\{{x^2},}&{x≤0}\end{array}}$,
∴f(2)=-$\frac{1}{2}$,f(-2)=(-2)2=4,
f(2)+f(-2)=-$\frac{1}{2}+4$=$\frac{7}{2}$.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+(a-1)x+b+1,當(dāng)x∈[b,a]時,函數(shù)f(x)的圖象關(guān)于y軸對稱,數(shù)列{an}的前n項和為Sn,且Sn=f(n+1)-1
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0(m>0).
(1)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
(2)若“非p”是“非q”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=cosxB.y=-|x|+1C.y=2|x|D.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點A(m,n)是拋物線M:y2=2px(p>0)上的動點,點B是圓C:(x-2)2+y2=1上的動點,當(dāng)且僅當(dāng)m=$\frac{3}{2}$時,|AB|取得最小值.
(1)求拋物線方程;
(2)已知等邊三角形△ABC的三個頂點在拋物線M上,△ABC的重心Q落在雙曲線$\frac{{x}^{2}}{8}$-$\frac{9{y}^{2}}{8}$=1上,求點Q坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x-1=3(x>1),求x2-x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC中,角A,B,C所對的邊分別為a,b,c,若cosB=$\frac{{\sqrt{3}}}{3}$,sin(A+B)=$\frac{{\sqrt{6}}}{9}$,則sinA=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用秦九韶算法計算多項式f(x)=5x5+4x4+3x3+2x2+x+1當(dāng)x=4的值時,乘法運算的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>1,x≥1,y≥1,且loga2x+loga2y=loga(a4x4)+loga(a4y4),則loga(xy)的取值范圍是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊答案