精英家教網 > 高中數學 > 題目詳情
如果有窮數列a1,a2,a3,…,am(m=2k,k∈N*)滿足條件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我們稱其為“反對稱數列”.
(1)請在下列橫線上填入適當的數,使這6個數構成“反對稱數列”:-8,    ,-2,    ,4,    ;
(2)設{cn}是項數為30的“反對稱數列”,其中c16,c17,c18,…,c30構成首項為-1,公比為2的等比數列.設Tn是數列{ncn}的前n項和,則T15=   
【答案】分析:(1)根據“反對稱數列”的定義,可求出所求;
(2)根據“反對稱數列”的定義可知c1,c2,c3,…,c15構成末項為1,公比為的等比數列,首項為214,然后利用錯位相消法求所求即可.
解答:解:(1)∵有窮數列a1,a2,a3,…,am(m=2k,k∈N*)滿足條件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我們稱其為“反對稱數列”.
∴a1=-a6,a2=-a5,a3=-a4
∴a6=-a1=8,a2=-a5=4,a4=-a3=2
故答案為:-4,2,8
(2)∵{cn}是項數為30的“反對稱數列”,其中c16,c17,c18,…,c30構成首項為-1,公比為2的等比數列.
∴c1,c2,c3,…,c15構成末項為1,公比為的等比數列,首項為214
T15=c1+2c2+3c3+…+15c15
T15=214+2•213+3•212+…+15×1①
T15=213+2•212+…+15×
①-②得T15=214+213+•212+…+1-15×
∴T15=216-17.
故答案為:216-17
點評:本題主要考查了數列的應用,同時考查了利用錯位相消法求數列的和,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,a3,…,am(m為正整數)滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數列“例如,數列1,2,5,2,1與數列8,4,2,2,4,8都是“對稱數列”.設{bn}是項數為2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,23,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2010項和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正確命題的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數列”.例如:數列1,2,3,4,3,2,1就是“對稱數列”.已知數列bn是項數為不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中前連續(xù)的m項,則數列bn的前2008項和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個數為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數列”.例如:數列1,2,3,3,2,1 和數列1,2,3,4,3,2,1都為“對稱數列”.已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2009項和S2009所有可能為:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正確的有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數列”.例如:數列1,2,3,3,2,1 和數列1,2,3,4,3,2,1都為“對稱數列”.已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2009項和S2009所有可能的取值的序號為( 。
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省高三第五次月考理科數學 題型:填空題

如果有窮數列a1,a2,…an(a∈N*)滿足條件:,我們稱

其為“對稱數列”,例如:數列1,2,3,3,2,1和數列1,2,3,4,3,2,1都為“對稱數列”。已知數列{bn}是項數不超過2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,……,2m-1依次為該數列中連續(xù)的前m項,則數列的前2009項和S2009所有可能的取值的序號為            。

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步練習冊答案