已知、兩個(gè)盒子中分別裝有標(biāo)記為,,,的大小相同的四個(gè)小球,甲從盒中等可能地取出個(gè)球,乙從盒中等可能地取出個(gè)球.
(1)用有序數(shù)對表示事件“甲抽到標(biāo)號為i的小球,乙抽到標(biāo)號為是j的小球”,求取出的兩球標(biāo)號之和為5的概率;
(2)甲、乙兩人玩游戲,約定規(guī)則:若甲抽到的小球的標(biāo)號比乙大,則甲勝;反之,則乙勝.你認(rèn)為此規(guī)則是否公平?請說明理由.

(1)取出的兩球標(biāo)號之和為5的概率為. (2)此游戲不公平.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測試,每位測試者最多有三次機(jī)會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否則就一直測試到第三次為止。設(shè)每位工人每次測試通過的概率依次為0.2,0.5,0.5,每次測試相互獨(dú)立。
(1)求工人甲在這次上崗測試中參加考試次數(shù)為2、3的概率分別是多少?
(2)若有4位工人參加這次測試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,平面區(qū)域中的點(diǎn)的坐標(biāo)滿足,從區(qū)域中隨機(jī)取點(diǎn)
(Ⅰ)若,,求點(diǎn)位于第四象限的概率;
(Ⅱ)已知直線與圓相交所截得的弦長為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)將52名志愿者分成A,B兩組參加義務(wù)植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗. 假定A,B兩組同時(shí)開始植樹.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹苗用時(shí)小時(shí),種植一捆沙棘用時(shí)小時(shí),應(yīng)如何分配A,B兩組的人數(shù),使植樹活動持續(xù)的時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1小時(shí)后發(fā)現(xiàn),每名志愿者種植一捆白楊仍用時(shí)小時(shí),而每名志愿者種植一捆沙棘實(shí)際用時(shí)小時(shí),于是,從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動持續(xù)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
某高校在2012年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組,第2組,第3組,第4組,第5組得到的頻率分布直方圖如圖所示
(1)分別求第3,4,5組的頻率;
(2)若該校決定在第3,4,5 組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,
①已知學(xué)生甲和學(xué)生乙的成績均在第3組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;
②學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官的面試,第4組中有名學(xué)生被考官面試,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)為了解初三學(xué)生女生身高情況,某中學(xué)對初三女生身高進(jìn)行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別       頻數(shù)   頻率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 計(jì)        M       N  
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進(jìn)一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投次:在處每投進(jìn)一球得分,在處每投進(jìn)一球得分;如果前兩次得分之和超過分即停止投籃,否則投第三次.某同學(xué)在處的命中率,在處的命中率為,該同學(xué)選擇先在處投一球,以后都在處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為


0
2
3
4
5






(1) 求的值;(2) 求隨機(jī)變量的數(shù)學(xué)期望;
(3) 試比較該同學(xué)選擇都在處投籃得分超過分與選擇上述方式投籃得分超過分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知關(guān)于x的一元二次方程x-2(a-2)x-b+16=0.
(1)若a、b是一枚骰子先后投擲兩次所得到的點(diǎn)數(shù),求方程有兩個(gè)正實(shí)數(shù)根的概率;
(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實(shí)數(shù)根的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知8支球隊(duì)中有3支弱隊(duì),以抽簽方式將這8支球隊(duì)分為A、B兩組,每組4支.求:
(1)A、B兩組中有一組恰有兩支弱隊(duì)的概率;
(2)A組中至少有兩支弱隊(duì)的概率.

查看答案和解析>>

同步練習(xí)冊答案