【題目】如圖所示的四棱錐中,底面與側(cè)面垂直,且四邊形為正方形, ,點(diǎn)為邊的中點(diǎn),點(diǎn)在邊上,且,過, , 三點(diǎn)的截面與平面的交線為,則異面直線與所成的角為( )
A. B. C. D.
【答案】D
【解析】因?yàn)?/span>為邊的中點(diǎn),連接與DA的延長線交于點(diǎn)H,則A為DH的中點(diǎn),所以有AD=AH.連接FE與PA的延長線交于點(diǎn)G,則直線GH即為過C,E,F三點(diǎn)的截面與平面PAD的交線.
取PB的中點(diǎn)O,連接OE,AO.因?yàn)?/span>,所以.
所以F為的中點(diǎn),所以FE//OA,即FG//OA.
又易知OE//PA.即 OE∥AG.
所以四邊形OEGA為平行四邊形,從而.
過點(diǎn)D作DM∥GH交PA于點(diǎn)M.則,
從而得到.即M為PA的中點(diǎn).又DA=DP.因此DM⊥PA.
又底面ABCD與側(cè)面PAD垂直,四邊形ABCD為正方形,
所以AB⊥平面PAD.從而AB⊥DM.
因此DM⊥平面PAB.又DM//GH.即DM∥l.所以l⊥平面PAB.故l⊥PB,
所以異面直線PB與l所成的角為.
本題選擇D選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從集合中任取三個(gè)不同的元素作為直線中的值,若直線傾斜角小于,且在軸上的截距小于,那么不同的直線條數(shù)有( )
A. 109條B. 110條C. 111條D. 120條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的一部分圖象如圖所示,其中,,.
(1)求函數(shù)解析式;
(2)求時(shí),函數(shù)的值域;
(3)將函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), 為直線的傾斜角,且),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線經(jīng)過圓的圓心,求直線的傾斜角;
(2)若直線與圓交于, 兩點(diǎn),且,點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)是圓: 上的任意一點(diǎn),點(diǎn)與點(diǎn)的連線段的垂直平分線和相交于點(diǎn).
(I)求點(diǎn)的軌跡方程;
(II)過坐標(biāo)原點(diǎn)的直線交軌跡于點(diǎn), 兩點(diǎn),直線與坐標(biāo)軸不重合. 是軌跡上的一點(diǎn),若的面積是4,試問直線, 的斜率之積是否為定值,若是,求出此定值,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線交拋物線: 于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線, , 軸都相切,設(shè)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線, 分別與軸相交于點(diǎn), .當(dāng)線段的長度最小時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是關(guān)于復(fù)數(shù)的類比推理:
①復(fù)數(shù)的加減法運(yùn)算可以類比多項(xiàng)式的加減法運(yùn)算法則;
②由實(shí)數(shù)絕對(duì)值的性質(zhì)|x|2=x2類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
其中推理結(jié)論正確的是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com