已知a,b,c∈R,且a+b+c=3,a2+b2+c2的最小值為M.
(Ⅰ)求M的值;
(Ⅱ)解關(guān)于x的不等式|x+4|-|x-1|≥M.
考點(diǎn):二維形式的柯西不等式,絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)由柯西不等式可得(a2+b2+c2)(1+1+1)≥(a+b+c)2=9,從而求得a2+b2+c2的最小值為M.
(Ⅱ)把不等式|x+4|-|x-1|≥3等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求得每個(gè)不等式組的解集,再取并集,即得所求.
解答: 解:(Ⅰ)由柯西不等式可得(a2+b2+c2)(1+1+1)≥(a+b+c)2=9,
故a2+b2+c2 ≥3,即a2+b2+c2的最小值為M=3.
(Ⅱ)由不等式|x+4|-|x-1|≥3,可得
x<-4
-5≥3
①,或
-4≤x<1
2x+3≥3
 ②,或
x≥1
5≥3
③.
解①求得 x∈∅,解②求得 0≤x<1,解③求得x≥1,
綜上可得,不等式的解集為[0,+∞).
點(diǎn)評(píng):本題主要考查二維形式的柯西不等式的應(yīng)用,絕對(duì)值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P在拋物線y2=8x上,那么點(diǎn)P到點(diǎn)Q(3,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為( 。
A、(
1
4
,-1)
B、(
1
8
,-1)
C、(3,2
6
D、(3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x+
1
x
)+2lnx,g(x)=x2
(Ⅰ)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若?x1[e-1,e],?x2[-1,2],使不等式f(x1)>g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的一系列對(duì)應(yīng)值如下表:
x-
π
6
π
3
6
3
11π
6
3
17π
6
y-24-24
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對(duì)稱中心;
(3)若當(dāng)x∈[0,
6
]時(shí),方程f(x)=m+1恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)底面直徑和高都是4厘米的圓柱的內(nèi)切球?yàn)镺.
(1)求球O的體積和表面積;
(2)與底面距離為1的平面和球的截面圓為M,AB是圓M內(nèi)的一條弦,其長(zhǎng)為2
3
,求AB兩點(diǎn)間的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某花店每天以每枝10元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干支玫瑰花,并開(kāi)始以每枝20元的價(jià)格出售,已知該花店的營(yíng)業(yè)時(shí)間為8小時(shí),若前7小時(shí)內(nèi)所購(gòu)進(jìn)的玫瑰花沒(méi)有售完,則花店對(duì)沒(méi)賣(mài)出的玫瑰花以每枝5元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),1小時(shí)內(nèi)完全能夠把玫瑰花低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購(gòu)進(jìn)玫瑰花).該花店統(tǒng)計(jì)了100天內(nèi)玫瑰花在每天的前7小時(shí)內(nèi)的需求量n(單位:枝,n∈N*)(由于某種原因需求量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而無(wú)法看清),制成如下表格(注:x,y∈N*;視頻率為概率).
前7小時(shí)內(nèi)的需求量n14151617
頻數(shù)1020xy
(Ⅰ)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列及數(shù)學(xué)期望;
(Ⅱ)若花店每天購(gòu)進(jìn)16枝玫瑰花所獲得的平均利潤(rùn)比每天購(gòu)進(jìn)17枝玫瑰花所獲得的平均利潤(rùn)大,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知AB=2,BC=3,∠ABC=60°,AH⊥BC于H,M為AH的中點(diǎn),若
AM
AB
BC
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-2x
(Ι)若曲線y=f(x)-g(x)在x=1與x=
1
2
處的切線相互平行,求實(shí)數(shù)a的值.
(Ⅱ)若函數(shù)y=f(x)-g(x)在(
1
3
,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P、Q兩點(diǎn),過(guò)線段PQ的中點(diǎn)作X軸的垂線分別交C1、C2于點(diǎn)M、N,判斷C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線是否平行,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE,CF的中點(diǎn).
(1)求證:AC⊥平面BDEF;
(2)求證:平面BDGH∥平面AEF;
(3)求多面體ABCDEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案