在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,……這些數(shù)叫做三角形數(shù),因?yàn)檫@些數(shù)目的石子可以排成一個(gè)正三角形(如下圖)則第八個(gè)三角形數(shù)是  (   )

A.35               B.36               C.37               D.38

 

【答案】

B

【解析】

試題分析:根據(jù)題意,我們發(fā)現(xiàn)畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,……這些數(shù)叫做三角形數(shù),構(gòu)成了這樣一個(gè)規(guī)律,就是1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15,依次類推,第八個(gè)三角形中的數(shù)位1+2+3+4+5+6+7+8=36,故答案為B.

考點(diǎn):數(shù)列的規(guī)律性

點(diǎn)評(píng):主要是考查了數(shù)列的遞推關(guān)系 運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,…這些數(shù)叫做三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成一個(gè)正三角形(如圖).
精英家教網(wǎng)

試問(wèn)三角形數(shù)的一般表達(dá)式為(  )
A、n
B、
1
2
n(n+1)
C、n2-1
D、
1
2
n(n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,…,這些數(shù)叫做三角形數(shù),其通項(xiàng)為
n(n+1)
2
,前n項(xiàng)和為sn=
n(n+1)(n+2)
6
,如下圖所示,有一列三角形數(shù)表,其位于三角形的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,依次記各三角形數(shù)表中的所有數(shù)之和為an,則a1=
0+2+6
4
=
2(1+3)
4
=2,a2=
0+3+9+18
9
=
3(1+3+6)
9
=
10
3
精英家教網(wǎng)
(1)求a3,a4,并寫(xiě)出an的表達(dá)式;
(2)令bn=
an
an+1
+
an+1
an
,證明2n<b1+b2+b3+…+bn<2n+2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,…這些數(shù)叫做三角形數(shù),因?yàn)檫@些數(shù)對(duì)應(yīng)的點(diǎn)可以排成一個(gè)正三角形,則第n個(gè)三角形數(shù)為(  )
精英家教網(wǎng)
A、n
B、
n(n+1)
2
C、n2-1
D、
n(n-1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在古希臘,畢達(dá)哥拉斯把1,3,6,10,15,21,28,…這些數(shù)叫做三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)子可以排成一個(gè)正三角形(如圖).

試問(wèn)三角形數(shù)的一般表達(dá)式為(    )

A.n              B.           C.n2-1           D.

查看答案和解析>>

同步練習(xí)冊(cè)答案