精英家教網 > 高中數學 > 題目詳情
是兩條不同的直線,是兩個不重合的平面,
給定下列四個命題,其中為真命題的序號是              。
;②
;④
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,平面,,,分別為的中點.
(Ⅰ)證明:平面
(Ⅱ)求與平面所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題



( 本小題滿分12分)
(普通中學做)如圖,四棱錐P—ABCD中,底面ABCD 為矩形,AB=8,AD=4,側面PAD為等邊三角形,并且與底面所成二面角為60
求PA與底面ABCD所成角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)如圖,點P在正方形ABCD所在的平面外,PD⊥面ABCD,∠PAD=45°,空間一點E在平面ABCD上的射影是點B,且PB⊥面AEC.

(1)求直線AD與平面AEC所成的角的正切值;
(2)若F是AP的中點,求直線BF與CE所成角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((10分)如圖所示,在四棱錐PABCD中,底面為直角梯形,ADBC,BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCM、N分別為PC、PB的中點.

(1)求證:PBDM;
(2)求BD與平面ADMN所成的角.                          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩個不同的平面和兩條不重合的直線,下列四個命題:
①若            ②若 
③若     ④若 
其中正確命題的個數是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在四面體ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求證:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若半徑是的球與正三棱柱的各個面都相切,則球與正三棱柱的體積比是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖所示,在正方體ABCDA1B1C1D1中,M、N分別是棱AB、CC1的中點,△MB1P的頂點P在棱CC1與棱C1D1上運動,
有以下四個命題:
A.平面MB1PND1;
B.平面MB1P⊥平面ND1A1
C.△MB1P在底面ABCD上的射影圖形的面積為定值;
D.△MB1P在側面D1C1CD上的射影圖形是三角形.
其中正確命題的序號是__________.

查看答案和解析>>

同步練習冊答案