1.已知函數(shù)f(x)=xlnx-ax2+(2a-1)x.
(1)若a=$\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x∈[1,+∞)時恒有f(x)≤a-1,求a的取值范圍.

分析 (1)求得f(x)的解析式,求出導數(shù),令g(x)=1+lnx-x,求出導數(shù),單調(diào)區(qū)間和最大值,即可得到f(x)的單調(diào)區(qū)間;
(2)當x≥1時,f(x)≤a-1,即為xlnx-ax2+(2a-1)x≤a-1,討論x=1和x>1,由參數(shù)分離和構(gòu)造函數(shù)g(x)=xlnx-(x-1)-(x-1)2(x>1),求出導數(shù)和單調(diào)性,即可判斷g(x)的單調(diào)性,可得a的范圍.

解答 解:(1)a=$\frac{1}{2}$時,f(x)=xlnx-$\frac{1}{2}$x2,x>0.
f(x)的導數(shù)為f′(x)=1+lnx-x,
令g(x)=1+lnx-x,g′(x)=$\frac{1}{x}$-1,
當x>1時,g′(x)<0,g(x)遞減;當0<x<1時,g′(x)>0,g(x)遞增.
即有g(shù)(x)在x=1處取得極大值,且為最大值0.
則g(x)≤0,即1+lnx-x≤0,
即f′(x)≤0,則f(x)在(0,+∞)遞減.
綜上可得,f(x)的減區(qū)間為(0,+∞),無增區(qū)間;
(2)當x≥1時,f(x)≤a-1,
即為xlnx-ax2+(2a-1)x≤a-1,
當x=1時,上式顯然成立.
當x>1時,可得a≥$\frac{xlnx-x+1}{(x-1)^{2}}$.
由$\frac{xlnx-x+1}{(x-1)^{2}}$-1=$\frac{xlnx-(x-1)-(x-1)^{2}}{(x-1)^{2}}$,
設(shè)g(x)=xlnx-(x-1)-(x-1)2(x>1),
g′(x)=1+lnx-1-2(x-1)=lnx-2(x-1),
由g″(x)=$\frac{1}{x}$-2<0在x>1恒成立,
可得g′(x)在(1,+∞)遞減,可得g′(x)<g′(1)=0,
即g(x)在(1,+∞)遞減,可得g(x)<g(1)=0,
則$\frac{xlnx-x+1}{(x-1)^{2}}$<1成立,
即有a≥1.
即a的范圍是[1,+∞).

點評 本題考查導數(shù)的運用:求單調(diào)區(qū)間和極值、最值,考查不等式成立問題的解法,注意運用參數(shù)分離和構(gòu)造函數(shù)法,求得導數(shù)判斷單調(diào)性,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.在等比數(shù)列{an}中,各項都是正數(shù),若a1+a2+a3=1,a7+a8+a9=4,則數(shù)列{an}的前15項的和為31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求值:
(1)2${\;}^{lo{g}_{2}3}$;(2)4${\;}^{3+lo{g}_{4}5}$;(3)3${\;}^{2lo{g}_{3}2}$+1;(4)9${\;}^{lo{g}_{3}2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=a+lnx,記g(x)=f′(x).
(Ⅰ)已知函數(shù)h(x)=f(x)•g(x)在[1,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍;
(Ⅱ)(ⅰ)求證:當a=1時,f(x)≤x;
(ⅱ)當a=2時,若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知ABC-A1B1C1是各棱長均等于a的正三棱柱,D是側(cè)棱CC1的中點,則直線AD與平面ABB1A1所成角的正弦值是$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,圓O的直徑AB=4,直線CE和圓O相切于點C,AD⊥CE于D,若∠ABC=30°,則AD的長為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}|x|-2,x≤1\\{2^{1-x}},x>1\end{array}$,若函數(shù)y=f(x)-ax+1恰有兩個零點,則實數(shù)a的取值范圍是-1<a≤0或1≤a<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.關(guān)于x的方程ax-x=1(a∈Z)有整數(shù)解,則a=0或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知集合A={x|1+2x-3x2>0},B={x|2x(4x-1)<0},則A∩(∁RB)=$(-\frac{1}{3},0]∪[\frac{1}{4},1)$.

查看答案和解析>>

同步練習冊答案