9.已知函數(shù)$f(x)=x+\frac{a}{x}-2$,a∈R.
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)在x=1處的切線平行于x軸,求a的值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值;(2)求出函數(shù)的導(dǎo)數(shù),得到f′(1)=0,解出即可.

解答 解:(1)a=4時(shí),f(x)=x+$\frac{4}{x}$-2,
f′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{{x}^{2}-4}{{x}^{2}}$,
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<0或0<x<2,
∴f(x)在(-∞,-2)遞增,在(-2,0)遞減,
在(0,2)遞減,在(2,+∞)遞增,
∴f(x)極大值=f(-2)=-6,f(x)極小值=f(2)=2;
(2)f′(x)=1-$\frac{a}{{x}^{2}}$,
若函數(shù)在x=1處的切線平行于x軸,
則f′(1)=1-a=0,解得:a=1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等比數(shù)列{an}中a3=3,a9=27,則a6=( 。
A.9B.-9C.9或-9D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.角θ滿足sinθtanθ>0,則角θ的終邊落在( 。
A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)是以2為周期的偶函數(shù),且當(dāng)x∈(0,1)時(shí),f(x)=x+1,則f(x)在(1,2)內(nèi)的解析式是f(x)=3-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=-1時(shí),令g(x)=x3+x-f(x),求證:ln($\frac{n+1}{n}$)>$\frac{n-1}{{n}^{3}}$(n∈N*)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx-x
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=x3+bx2+cx+d(b、a、d為常數(shù))的極大值為f(x1)、極小值為f(x2),且x1∈(0,1),x2∈(1,2),則${({b+\frac{1}{2}})^2}+{({c-3})^2}$的取值范圍是( 。
A.$({\sqrt{5},\frac{{\sqrt{61}}}{2}})$B.$({\sqrt{5},5})$C.$({5,\frac{61}{4}})$D.(5,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:當(dāng)x>0時(shí),x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′($\frac{π}{12}$)=0;
③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),則g′(2016)=2015!;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
其中假命題為①②④.

查看答案和解析>>

同步練習(xí)冊(cè)答案