設(shè)偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時,f(x)=x,則關(guān)于x的方程數(shù)學(xué)公式在區(qū)間[0,3]上解的個數(shù)有


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:根據(jù)已知條件推導(dǎo)函數(shù)f(x)的周期,再利用函數(shù)與方程思想把問題轉(zhuǎn)化,畫出函數(shù)的圖象,即可求解.
解答:解:∵f(x-1)=f(x+1)∴f(x)=f(x+2),
∴原函數(shù)的周期T=2,
又∵f(x)是偶函數(shù)
∴f(-x)=f(x),
又∵x∈[0,1]時,f(x)=x,函數(shù)的周期為2,
∴原函數(shù)的對稱軸是x=1,且f(-x)=f(x+2)
設(shè)
方程=x根的個數(shù),即為函數(shù)的圖象交點的個數(shù).
由以上條件,可畫出的圖象:
又因為當(dāng)x=1時,y1>y2,
∴在(0,1)內(nèi)有一個交點.
∴結(jié)合圖象可知,在[0,3]上共有3個交點
∴在[0,3]上,原方程有3個根.
故選C.
點評:本題考查函數(shù)的性質(zhì),函數(shù)與方程思想,數(shù)形結(jié)合思想.轉(zhuǎn)化思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),則{x|f(x-2)>0}=
{x|x<0,或x>4}
{x|x<0,或x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),則不等式f(x-2)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)滿足:x≥0時f(x)=2x-4,則不等式x•f(x-2)>0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),則不等式f(x)>0的解集為
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)設(shè)偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時,f(x)=x,則關(guān)于x的方程f(x)=(
1
8
)x
在區(qū)間[0,3]上解的個數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊答案