分析 (1)利用二倍角公式及變形、兩角和的正弦公式化簡解析式,由三角函數(shù)的周期公式求出f(x)的最小正周期;
(2)由正弦函數(shù)的減區(qū)間和整體思想求出f(x)的單調(diào)減區(qū)間;
(3)由正弦函數(shù)的最大值和整體思想求出自變量x的集合.
解答 解:(1)由題意得,y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1
=$\frac{1}{4}$(1+cos2x)+$\frac{\sqrt{3}}{4}$sin2x+1=$\frac{1}{2}sin(2x+\frac{π}{6})+\frac{5}{4}$,
由T=$\frac{2π}{2}=π$得,f(x)的最小正周期是π;
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ(k∈Z)$得,
$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ(k∈Z)$,
∴f(x)的單調(diào)減區(qū)間是$[\frac{π}{6}+kπ,\frac{2π}{3}+kπ](k∈Z)$;
(3)當$sin(2x+\frac{π}{6})=1$ 時,函數(shù)y取得最大值是$\frac{7}{4}$,
此時$2x+\frac{π}{6}=\frac{π}{2}+2kπ(k∈Z)$,即$x=\frac{π}{6}+kπ(k∈Z)$,
∴自變量x的集合是{x|$x=\frac{π}{6}+kπ,k∈Z$}.
點評 本題考查正弦函數(shù)的圖象與性質(zhì),三角恒等變換中的公式,考查整體思想,化簡、變形能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com