B
分析:由題意定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,說明該函數(shù)的周期為T=4,又有函數(shù)f(x+1)為奇函數(shù),說明函數(shù)f(x)應(yīng)該有對稱中心(1,0)
解答:∵定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,即:f(x+2)=-f(x)對于一切x都成立,式子中的x被x+2代替得到:f(x+4)=-f(x+2)=f(x),有函數(shù)的周期的定義可以得到:函數(shù)f(x)的周期T=4,所以①錯(cuò);
又∵函數(shù)f(x+1)為奇函數(shù),即函數(shù)f(x)向左平移一個(gè)單位以后關(guān)于(0,0)對稱,
∴平移之前的圖象應(yīng)該關(guān)于(1,0)對稱,故②正確;
∵f(x+2)=-f(x)且f(x+1)=y為奇函數(shù),
∴
?
?f(x+3)=f(-x+1)?函數(shù)f(x)有對稱軸x=2,所以③正確;
對于⑤由于f(1)=0,所以f(2011)=f(502×4+3)=f(3)=-f(1)=0,故⑤正確.
故選B
點(diǎn)評:此題考查了函數(shù)的周期定義及利用定義求函數(shù)的周期,還考查了函數(shù)的對稱及與圖象的平移變換,還考查了復(fù)合函數(shù)的奇函數(shù)的定義式.