【題目】已知函數(shù)f(x)= 若f(2﹣a2)>f(a),則實數(shù)a的取值范圍為

【答案】(﹣2,1)
【解析】解:函數(shù)f(x),當(dāng)x≥0 時,f(x)=x2+4x,由二次函數(shù)的性質(zhì)知,它在[0,+∞)上是增函數(shù),

當(dāng)x<0時,f(x)=4x﹣x2,由二次函數(shù)的性質(zhì)知,它在(﹣∞,0)上是增函數(shù),

該函數(shù)連續(xù),則函數(shù)f(x) 是定義在R 上的增函數(shù)

∵f(2﹣a2)>f(a),

∴2﹣a2>a

解得﹣2<a<1

實數(shù)a 的取值范圍是(﹣2,1)

所以答案是:(﹣2,1)

【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: ,點P(4,0),過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點. (Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:以坐標(biāo)原點O為圓心與PA相切的圓,必與直線PB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (b≠0).
(1)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)b的取值范圍;
(2)求函數(shù)f(x)的極值點;
(3)令b=1, ,設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點,其中﹣1<x1<x2<x3 . 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個”“生二孩能休多久產(chǎn)假”等成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26


(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機變量ξ的分布及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對x∈R恒成立,當(dāng)x∈[0,1]時,f(x)=2x , 則f(﹣log224)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知I為△ABC的內(nèi)心,cosA= ,若 =x +y ,則x+y的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且cos2B+3cos(A+C)+2=0, ,那么△ABC周長的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與g(x)的圖象關(guān)于原點對稱,且它們的圖象拼成如圖所示的“Z”形折線段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五個點.則滿足題意的函數(shù)f(x)的一個解析式為

查看答案和解析>>

同步練習(xí)冊答案