分析 (Ⅰ)設(shè)等差數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式列方程組,解方程組可得首項(xiàng)和公差,進(jìn)而得到所求通項(xiàng)公式;
(Ⅱ)分組求和,結(jié)合等差數(shù)列和等比數(shù)列的求和公式即可得到所求和.
解答 解(I)由題知$\left\{\begin{array}{l}{{a}_{5}={a}_{1}+4d=9}\\{{a}_{7}={a}_{1}+6d=13}\end{array}\right.$,
解得a1=1,d=2,
∴an=2n-1,n∈N*,.
(II)由(I)知,an+bn=(2n-1)+2n-1,
由于{an}的前n項(xiàng)和為$\frac{n(1+2n-1)}{2}$=n2,
∵${b_n}={2^{n-1}},n∈{N^*}$.
∴{bn}是以1為首項(xiàng),以2為公比的等比數(shù)列,
∴數(shù)列{bn}的前n項(xiàng)和為$\frac{1×(1-{2}^{n})}{1-2}$=2n-1,
∴{an+bn}的前n項(xiàng)和Sn=n2+2n-1
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -a3-3a+4 | C. | 4 | D. | -a3+3a+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x和y的相關(guān)系數(shù)在-1和0之間 | |
B. | x和y的相關(guān)系數(shù)為直線l的斜率 | |
C. | 當(dāng)n為偶數(shù)時(shí),分布在l兩側(cè)的樣本點(diǎn)的個(gè)數(shù)一定相同 | |
D. | 所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線l上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若ac>bc,則a>b | B. | 若a>b,c>d,則ac>bd | ||
C. | 若a>b,則$\frac{1}{a}<\frac{1}$ | D. | 若ac2>bc2,則a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③④ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{40}{3}$ | B. | $\frac{34}{3}$ | C. | $10+\frac{{4\sqrt{2}}}{3}$ | D. | $6+\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com