已知函數(shù).        
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.

(1)當(dāng)時(shí),取得最小值. (2)的取值范圍是

解析試題分析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b5/7/b0f2o1.png" style="vertical-align:middle;" />,  1分  
的導(dǎo)數(shù).    2分
,解得;令,解得.
從而單調(diào)遞減,在單調(diào)遞增.    4分
所以,當(dāng)時(shí),取得最小值.         6分
(2)依題意,得上恒成立,
即不等式對(duì)于恒成立 .   
,  則.   8分
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/3/bv68k.png" style="vertical-align:middle;" />,  
上的增函數(shù),  所以 的最小值是,  10分
所以的取值范圍是.    12分
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式恒成立問題。
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,通過研究函數(shù)的單調(diào)性,明確最值情況。涉及不等式恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,得到確定參數(shù)(范圍)的目的。對(duì)數(shù)函數(shù)要注意其真數(shù)大于0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為
(1)求,的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若存在,對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在x=與x =l時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象經(jīng)過點(diǎn),且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線處的切線互相平行,求的值及函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過點(diǎn)可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線與曲線交于,兩點(diǎn),求證:。

查看答案和解析>>

同步練習(xí)冊(cè)答案