【答案】
分析:(Ⅰ)先求f(x)的導(dǎo)數(shù),再求f'(x)的導(dǎo)數(shù),從而確定f'(x)的單調(diào)性,由此可求導(dǎo)數(shù)f'(x)的極小值;
(Ⅱ)解法1:對任意的t>0,記函數(shù)
(x>0),分類討論,確定函數(shù)F'
t(x)在(0,s)上的單調(diào)性,從而可得F
t(x)在(0,s)上的單調(diào)性,由此可求實數(shù)k的取值范圍;
解法2:分離參數(shù)可得
成立,即
成立,則存在s>0,使得當x∈(0,s)時,f(x)≤0成立,求導(dǎo)函數(shù),可得當x∈(0,s)時,f
′′(x)≤0成立,由此可求實數(shù)k的取值范圍.
解答:解:(Ⅰ)當k=1時,函數(shù)f(x)=e
x-(1+x+x
2)(x>0),
則f(x)的導(dǎo)數(shù)f'(x)=e
x-(1+2x),f'(x)的導(dǎo)數(shù)f''(x)=e
x-2.…(2分)
令f''(x)=e
x-2=0,可得x=ln2,
當0<x<ln2時,f''(x)<0;當x>ln2時,f''(x)>0,
從而f'(x)在(0,ln2)內(nèi)遞減,在(ln2,+∞)內(nèi)遞增.…(4分)
故導(dǎo)數(shù)f'(x)的極小值為f'(ln2)=1-2ln2…(6分)
(Ⅱ)解法1:對任意的t>0,記函數(shù)
(x>0),
根據(jù)題意,存在s>0,使得當x∈(0,s)時,F(xiàn)
t(x)<0.
則F
t(x)的導(dǎo)數(shù)
,F(xiàn)'
t(x)的導(dǎo)數(shù)
…(9分)
①若
,因
在(0,s)上遞增,故當x∈(0,s)時,
>
≥0,
于是F'
t(x)在(0,s)上遞增,則當x∈(0,s)時,F(xiàn)'
t(x)>F'
t(0)=0,從而F
t(x)在(0,s)上遞增,故當x∈(0,s)時,F(xiàn)
t(x)>F
t(0)=0,與已知矛盾 …(11分)
②若
,注意到
在[0,s)上連續(xù)且遞增,故存在s>0,使得當x∈(0,s)
,從而F'
t(x)在(0,s)上遞減,于是當x∈(0,s)時,F(xiàn)'
t(x)<F'
t(0)=0,
因此F
t(x)在(0,s)上遞減,故當x∈(0,s)時,F(xiàn)
t(x)<F
t(0)=0,滿足已知條件…(13分)
綜上所述,對任意的t>0,都有
,即1-2(k+t)<0,亦即
,
再由t的任意性,得
,經(jīng)檢驗
不滿足條件,所以
…(15分)
解法2:由題意知,對任意的t>0,存在s>0,使得當x∈(0,s)時,都有
成立,即
成立,則存在s>0,使得當x∈(0,s)時,f(x)≤0成立,
又f(0)=0,則存在s
>0,使得當x∈(0,s
)時,f(x)為減函數(shù),即當x∈(0,s
)時使f'(x)=e
x-1-2kx≤0成立,
又f'(0)=0,故存在s
>s>0,使得當x∈(0,s)時f'(x)為減函數(shù),
則當x∈(0,s)時f
′′(x)≤0成立,即e
x-2k≤0,得
.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查學生分析解決問題的能力,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性是關(guān)鍵.