12.已知線段PD垂直于正方形ABCD所在平面,D為垂足,PD=3,AB=4,連接PA、PB、PC.
(1)求證:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

分析 (1)推導(dǎo)出PD⊥BC,DC⊥BC,從而B(niǎo)C⊥平面PDC,由此能證明平面PBC⊥平面PDC.
(2)以D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PB-C的余弦值.

解答 證明:(1)∵線段PD垂直于正方形ABCD所在平面,BC?平面ABCD,
∴PD⊥BC,DC⊥BC,
∵PD∩DC=D,∴BC⊥平面PDC,
∵BC?平面PDC,∴平面PBC⊥平面PDC.
解:(2)以D為原點(diǎn),DA為x軸,DC為y軸,
DP為z軸,建立空間直角坐標(biāo)系,
則A(4,0,0),B(4,4,0),C(0,4,0),
P(0,0,4),
$\overrightarrow{PB}$=(4,4,-4),$\overrightarrow{PA}$=(4,0,-4),
$\overrightarrow{PC}$=(0,4,-4),
設(shè)平面PAB的法向量$\overrightarrow{m}$=(a,b,c),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=4a+4b-4c=0}\\{\overrightarrow{m}•\overrightarrow{PA}=4a-4c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
平面PBC的法向量為$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=4x+4y-4z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=4y-4z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
設(shè)二面角A-PB-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,
∴二面角A-PB-C的余弦值為$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x,y可以在0<x<2,0<y<2的條件下隨機(jī)取數(shù),那么取出的數(shù)對(duì)滿(mǎn)足x2+(y-1)2<1的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C:ρsin2θ=2cosθ,過(guò)定點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.(t為參數(shù))$,若直線l和曲線C相交于M、N兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)證明:|PM|、|MN|、|PN|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,圓內(nèi)接四邊形ABCD的邊BC與AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上.
(1)若EF∥CD,證明:EF2=FA•FB;
(2)若EB=3EC,EA=2ED,求$\frac{DC}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知曲線C的極坐標(biāo)方程是ρ=4cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,若傾斜角為$\frac{π}{3}$的直線l經(jīng)過(guò)點(diǎn)P(4,2).
(Ⅰ)寫(xiě)出直線l的參數(shù)方程,并將曲線C的極坐標(biāo)方程化為直角坐標(biāo)系方程;
(Ⅱ)若直線l與曲線C交于不同的兩點(diǎn)A、B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,B=45°,b=3.
(Ⅰ)若cosC+$\sqrt{2}$cosA=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m$•$\overrightarrow n$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,向量$\overrightarrow{a}$=$[\begin{array}{l}{5}\\{3}\end{array}]$,計(jì)算A5$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若x,y滿(mǎn)足x2+y2=1,則x+$\sqrt{3}$y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.三棱錐S-ABC中,正三角形ABC的邊長(zhǎng)為$2\sqrt{3}$,SA=SB=2,二面角S-AB-C的平面角的大小為60°,則SC=$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案