AB
+
BC
+
CA
=
 
考點:向量的加法及其幾何意義
專題:平面向量及應(yīng)用
分析:由向量的三角形法則化簡可得.
解答: 解:由向量的三角形法則可得
AB
+
BC
+
CA
=
AC
+
CA
=
0

故答案為:
0
點評:本題考查向量運算的三角形法則,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α-β)=-
1
3
,cos β=
5
5
,α,β∈(0,π).
(Ⅰ)求tanα的值;    
(Ⅱ)求
sin2α+sin2α
6cos2α+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)x,y滿足
1
y
+
3
x
=5,且3x+4y≥m恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+2x)n展開式中各項的二項式系數(shù)之和為32,則該展開式中含x3項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x+2的反函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,已知SA=4,SB≥7,SC≥9,AB=5,BC≤6,AC≤8.則三棱錐S-ABC體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=6,異面直線BC1與AA1所成角的大小為
π
6
,該三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對的邊為a,b,c.
①若ab>c2,則C<
π
3
;        ②若a+b>2c,則C<
π
3
;
③若a3+b3=c3,則C<
π
2
;      ④若(a+b)c<2ab,則C<
π
2
;
⑤若(a2+b2)c2<2a2b2,則C>
π
3

其中所有敘述正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=x上一點P到準線的距離等于它到頂點的距離,則點P到x軸的距離為( 。
A、
1
8
B、
2
4
C、
1
4
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案