3.如圖,AB是圓O的一條切線,切點為B,直線ABD,CFD,CGE都是圓O的割線,已知AC=AB.
(1)若CG=1,CD=4,求$\frac{DE}{GF}$的值;
(2)求證:FG∥AC.

分析 (1)根據(jù)圓內接四邊形的性質,證出∠CGF=∠CDE且∠CFG=∠CED,可得△CGF∽△CDE,因此$\frac{DE}{GF}=\frac{CD}{CG}$;
(2)根據(jù)切割線定理證出AB2=AD•AE,所以AC2=AD•AE,證$\frac{AD}{AC}=\frac{AC}{AE}$,結合∠EAC=∠DAC得到△ADC∽△ACE,所以∠ADC=∠ACE.再根據(jù)圓內接四邊形的性質得∠ADC=∠EGF,從而∠EGF=∠ACE,可得GF∥AC.

解答 (1)解:由題意可得:G,E,D,F(xiàn)四點共圓,∴∠CGF=∠CDE,∠CFG=∠CED,
∴△CGF~△CDE,
∴$\frac{DE}{GF}=\frac{CD}{CG}$,
又∵CG=1,CD=4,∴$\frac{DE}{FG}=4$
(2)證明:因為AB為切線,AE為割線,AB2=AD•AE,
又因為AC=AB,所以AD•AE=AC2
所以$\frac{AD}{AC}=\frac{AC}{AE}$,
又因為∠EAC=∠DAC,所以△ADC~△ACE,所以∠ADC=∠ACE,
又因為∠ADC=∠EGF,所以∠EGF=∠ACE,所以FG∥AC

點評 本題給出圓的切線與割線,求證直線互相平行,并求線段的比值.著重考查了切割線定理、圓內接四邊形的性質、相似三角形的判定與性質等知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.定義在R上的函數(shù)f(x)滿足:f(m+n)=f(m)+f(n)-2對任意m、n∈R恒成立.當x>0時,f(x)>2.
(1)求證:f(x)是R上的單調遞增函數(shù);
(2)若f(-3)=-7,且不等式f(t2+at-a)≥-7對任意t∈[-2,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.給定下列四個命題:
①若$\frac{1}{a}$<$\frac{1}$<0,則b2>a2;
②已知直線l,平面α,β為不重合的兩個平面,若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④三棱錐的四個面可以都是直角三角形.
其中真命題編號是①③④(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)求函數(shù)f(x)=$\sqrt{{x^2}+x-1}$+$\frac{1}{{{x^2}-2x+1}}$的定義域;
(2)求函數(shù)f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{(x-3)(x-1)}$的定義域;
(3)已知函數(shù)y=f(x2-1)定義域是[-1,3],則y=f(2x+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點P是拋物線x=$\frac{1}{4}$y2上的一個動點,則點P到點A(-1,2)的距離與點P到y(tǒng)軸的距離之和的最小值為(  )
A.$2\sqrt{2}$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知異面直線a,b所成的角為60°,過空間一定點P作直線l,是l與a,b所成的角均為60°,這樣的直線l有3條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),a=(cosα)cosα,b=(sinα)cosα,c=(cosα)sinα,則( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.總體由20個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為01.
78166572080263140702436997280198
32049234493582003623486969387481

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,M、N、P分別為空間四邊形ABCD的邊AB,BC,CD上的中點,求證:
(1)AC∥平面MNP,
(2)平面MNP與平面ACD的交線與AC平行.

查看答案和解析>>

同步練習冊答案