一根細(xì)金屬絲下端掛著一個(gè)半徑為1cm的金屬球,將它浸沒在底面半徑為2cm的圓柱形容器內(nèi)的水中,現(xiàn)將金屬絲向上提升,當(dāng)金屬球全部被提出水面時(shí),容器內(nèi)的水面下降的高度是
 
cm.
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離,球
分析:分別運(yùn)用球的體積和圓柱的體積公式,由圓柱減少的水的體積,即為球的體積,得到方程,解出即可.
解答: 解:半徑為1cm的金屬球的體積為V=
4
3
π
cm3,
將金屬絲向上提升,當(dāng)金屬球全部被提出水面時(shí),
圓柱減少的水的體積,即為球的體積,
設(shè)水面下降的高度為h,
則4πh=
4
3
π
,解得,h=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題考查球和圓柱的體積公式及運(yùn)用,抓住圓柱減少的水的體積,即為球的體積,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列表達(dá)式的值
(1)若tanα=2,求
sinα+cosα
sinα-cosα
+cos2α的值;
(2)已知sin(α+
π
12
)=
1
3
,求cos(α+
12
)的值;
(3)設(shè)角α的終邊經(jīng)過點(diǎn)P(-6a,-8a)(a≠0),求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA垂直于正方形ABCD所在的平面,若PA=2,AB=4,求:
(1)三棱錐P-ABD的表面積;
(2)AC與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若4a2-3b2=12,則|2a-b|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1、F2為橢圓的焦點(diǎn),等邊三角形AF1F2兩邊的中點(diǎn)M,N在橢圓上,則橢圓的離心率為( 。
A、
3
-1
B、
5
-1
C、
3
-1
2
D、
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C點(diǎn)在球O的球面上,∠BAC=90°AB=AC=2.球心O到平面ABC的距離為1,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.已知拋物線y2=4x(x>0),是否存在正數(shù)m,對(duì)于過點(diǎn)(m,0)且與拋物線有兩個(gè)交點(diǎn)A,B的任一直線都有
FA
FB
<0?若存在求出m的取值范圍,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB=4,BC=2,PA=
6
,∠ACB=90°,則直線AB與平面PBC所成角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,2),B(2,3),C(-2,5),求證:△ABC是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案