精英家教網 > 高中數學 > 題目詳情
已知直線l:y=kx+k+1,拋物線C:y2=4x,定點M(1,1).
(I)當直線l經過拋物線焦點F時,求點M關于直線l的對稱點N的坐標,并判斷點N是否在拋物線C上;
(II)當k(k≠0)變化且直線l與拋物線C有公共點時,設點P(a,1)關于直線l的對稱點為Q(x0,y0),求x0關于k的函數關系式x0=f(k);若P與M重合時,求x0的取值范圍.
解:(I)由焦點F(1,0)在l上,得
設點N(m,n)則有:,
解得,

,
N點不在拋物線C上.
(2)把直線方程代入拋物線方程得:ky2﹣4y+4k+4=0,
∵相交,∴△=16(﹣k2﹣k+1)≥0,


解得
當P與M重合時,a=1

∵函數x0=f(x)(k∈R)是偶函數,且k>0時單調遞減.

,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點M(1,1).
(I)當直線l經過拋物線焦點F時,求點M關于直線l的對稱點N的坐標,并判斷點N是否在拋物線C上;
(II)當k(k≠0)變化且直線l與拋物線C有公共點時,設點P(a,1)關于直線l的對稱點為Q(x0,y0),求x0關于k的函數關系式x0=f(k);若P與M重合時,求x0的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:y=kx+b是橢圓C:
x24
+y2=1
的一條切線,F(xiàn)1,F(xiàn)2為左右焦點.
(1)過F1,F(xiàn)2作l的垂線,垂足分別為M,N,求|F1M|•|F2M|的值;
(2)若直線l與x軸、y軸分別交于A,B兩點,求|AB|的最小值,并求此時直線l的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:y=kx-1與雙曲線C:x2-y2=4
(1)如果l與C只有一個公共點,求k的值;
(2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點,且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�