a+
1
a
=7,則
a
+
1
a
=
 
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得(
a
+
1
a
2=a+
1
a
+2=7+2=9,由此能求出結(jié)果.
解答: 解:∵a+
1
a
=7,
∴(
a
+
1
a
2=a+
1
a
+2=7+2=9,
a
+
1
a
=3.或
a
+
1
a
=-3(舍).
故答案為:3.
點(diǎn)評(píng):本題考查代數(shù)式的值的求法,是基礎(chǔ)題,解題時(shí)要注意分?jǐn)?shù)指數(shù)冪的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某家企業(yè)的生產(chǎn)成本z(單位:萬(wàn)元)和生產(chǎn)收入ω(單位:萬(wàn)元)都是產(chǎn)量x(單位:t)的函數(shù),其解析式分別為:z=x3-18x2+75x-80,ω=15x
(1)試寫出該企業(yè)獲得的生產(chǎn)利潤(rùn)y(單位:萬(wàn)元)與產(chǎn)量x(單位:t)之間的函數(shù)解析式;
(2)當(dāng)產(chǎn)量為多少時(shí),該企業(yè)能獲得最大的利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則(1+i)4的值為(  )
A、4B、-4C、4iD、-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={m-2,-3},b={2m-1,m-3},若A∩B={-3},則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在
x2
9
+
y2
4
=1橢圓上,求點(diǎn)P到直線l:x+2y-10=0的最大距離及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x2
x+1
,求f(x)在x∈[0,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
3
2
x2的最大值不大于
1
6
,
(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[
1
4
,
1
2
]時(shí).f(x)≥
1
8
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1中E,F(xiàn),G,H分別為AA1,CC1,C1D1,D1A1的中點(diǎn),判斷EFGH的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,實(shí)軸長(zhǎng)為2;
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案