【題目】常州別稱龍城,是一座有著3200多年歷史的文化古城.常州既有春秋淹城、天寧寺等名勝古跡,又有中華恐龍園、嬉戲谷等游樂景點,每年都有大量游客來常州參觀旅游.為合理配置旅游資源,管理部門對首次來中華恐龍園游覽的游客進行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽中華恐龍園,另外的人計劃既游覽中華恐龍園又參觀天寧寺.每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2分.假設(shè)每位首次來中華恐龍園游覽的游客均按照計劃進行,且是否參觀天寧寺相互獨立,視頻率為概率.
(1)有2名首次來中華恐龍園游覽的游客是拼車到常州的,求“這2名游客都是既游覽中華恐龍園又參觀天寧寺”的概率;
(2)從首次來中華恐龍園游覽的游客中隨機抽取3人,記這3人的合計得分為X,求X的概率分布和數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析;期望為4.
【解析】
(1)根據(jù)每位游客只游覽中華恐龍園的概率為,既游覽中華恐龍園又參觀天寧寺的概率為,且相互獨立,利用獨立事件的概率求解.
(2)根據(jù)每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2分,得到隨機變量X的可能取值為3,4,5,6,然后分別求得相應(yīng)概率,列出分布列再求期望.
(1)由題意,每位游客只游覽中華恐龍園的概率為,既游覽中華恐龍園又參觀天寧寺的概率為
記兩位游客中一位游客“既游覽中華恐龍園又參觀天寧寺”為事件A,則P(A)=,
另一位游客“既游覽中華恐龍園又參觀天寧寺”為事件B,則P(B)=,
所以“這2名游客都是既游覽中華恐龍園又參觀天寧寺”為事件AB,
因為游客是否參觀天寧寺相互獨立,所以P(AB)=P(A)P(B)=,
(2)隨機變量X的可能取值為3,4,5,6,
,,
,,
∴X的概率分布為:
X | 3 | 4 | 5 | 6 |
p |
所以E(X)==4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的等邊三角形的中心為.,,為圓上的點,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,使得,,重合,得到三棱錐.當(dāng)所得三棱錐體積(單位:)最大時,的邊長為_________().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】白塔中學(xué)為了解校園愛國衛(wèi)生系列活動的成效,對全校學(xué)生進行了一次衛(wèi)生意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(1)求統(tǒng)計表、直方圖中的a,b,c的值;
(2)用分層抽樣的方法,從等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在某市的一次學(xué)情檢測中,學(xué)生的數(shù)學(xué)成績X服從正態(tài)分布N(105,100),其中90分為及格線,120分為優(yōu)秀線,下列說法正確的是( )
附:隨機變量服從正態(tài)分布N(,),則P()=0.6826,P()=0.9544,P()=0.9974.
A.該市學(xué)生數(shù)學(xué)成績的期望為105
B.該市學(xué)生數(shù)學(xué)成績的標準差為100
C.該市學(xué)生數(shù)學(xué)成績及格率超過0.99
D.該市學(xué)生數(shù)學(xué)成績不及格的人數(shù)和優(yōu)秀的人數(shù)大致相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a,bR.
(1)若a=1,求關(guān)于x的不等式的解集;
(2)若,討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的零點;
(2)若不存在相異實數(shù)、,使得成立.求實數(shù)的取值范圍;
(3)若對任意實數(shù),總存在實數(shù)、,使得成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓的方程為,圓的方程為,若動圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)過直線上的點作圓的兩條切線,設(shè)切點分別是,,若直線與軌跡交于,兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】退休年齡延遲是平均預(yù)期壽命延長和人口老齡化背景下的一種趨勢.某機構(gòu)為了了解某城市市民的年齡構(gòu)成,從該城市市民中隨機抽取年齡段在[20,80]內(nèi)的600人進行調(diào)查,并按年齡層次繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[60,80]內(nèi)的人為“老年人”,將上述人口分布的頻率視為該城市年齡段在[20,80]的人口分布的概率.從該城市年齡段在[20,80]內(nèi)的市民中隨機抽取3人,記抽到“老年人”的人數(shù)為則隨機變量的數(shù)學(xué)期望為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com