16.下圖網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.12+$\frac{81}{2}$πB.12+81πC.24+$\frac{81}{2}$πD.24+81π

分析 首先由網(wǎng)格三視圖還原幾何體為組合體,畫(huà)出示意圖,利用網(wǎng)格數(shù)據(jù)計(jì)算體積.

解答 解:幾何體如圖:由網(wǎng)格數(shù)據(jù)得到幾何體的體積為:$\frac{1}{3}×6×6×2+π×{3}^{2}×3+\frac{1}{2}π×{3}^{2}×3$=24$+\frac{81π}{2}$;
故選C

點(diǎn)評(píng) 本題考查了由幾何體的三視圖求幾何體的體積;關(guān)鍵是正確還原幾何體.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知角α(0°≤α<360°)終邊上一點(diǎn)的坐標(biāo)為(sin150°,cos150°),則α=(  )
A.150°B.135°C.300°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-4x+5,x≤1\\ lnx,x>1\end{array}\right.$若關(guān)于x的方程$f(x)=kx-\frac{1}{2}$恰有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.$({\frac{1}{2},\sqrt{e}})$B.$[{\frac{1}{2},\sqrt{e}})$C.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$D.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(m,n-1)與$\overrightarrow$=(2,-1)平行,則$\sqrt{{m}^{2}+{n}^{2}}$的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知($\root{3}{x}$+$\frac{1}{2\sqrt{x}}$)n(n∈N*)的展開(kāi)式中前三項(xiàng)的系數(shù)成等差數(shù)列.
(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某公司對(duì)新招聘的員工張某進(jìn)行綜合能力測(cè)試,共設(shè)置了A、B、C三個(gè)測(cè)試項(xiàng)目.假定張某通過(guò)項(xiàng)目A的概率為$\frac{1}{2}$,通過(guò)項(xiàng)目B、C概率均為a(0<a<1),且這三個(gè)測(cè)試項(xiàng)目能否通過(guò)相互獨(dú)立.
(Ⅰ)用隨機(jī)變量X表示張某在測(cè)試中通過(guò)的項(xiàng)目個(gè)數(shù),當(dāng)$a=\frac{1}{3}$時(shí),求X的概率分布和數(shù)學(xué)期望;
(Ⅱ)若張某通過(guò)一個(gè)項(xiàng)目的概率最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若x,y∈R+,$\frac{1}{x+1}+\frac{1}{y+1}=\frac{1}{2}$,則xy的最小值為(  )
A.1B.9C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在半徑為2cm的圓中,有一條弧長(zhǎng)為$\frac{π}{3}$ cm,它所對(duì)的圓心角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在△ABC中,D是邊BC上一點(diǎn),$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

同步練習(xí)冊(cè)答案