已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰好為一個(gè)正方形的四個(gè)頂點(diǎn),則該橢圓的離心率為( )

A B C D

 

【答案】

D

【解析】

試題分析:依題意橢圓的焦距和短軸長(zhǎng)相等,故,,∴.

考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省廣州市高三9月三校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)和上下兩個(gè)頂點(diǎn)是一個(gè)邊長(zhǎng)為2且∠F1B1F2的菱形的四個(gè)頂點(diǎn).

(1)求橢圓的方程;

(2)過(guò)右焦點(diǎn)F2 ,斜率為)的直線與橢圓相交于兩點(diǎn),A為橢圓的右頂點(diǎn),直線、分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為.求證:為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)為(0,2)和(0,-2),并且橢圓經(jīng)過(guò)點(diǎn),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項(xiàng),其中a、b、c都是正數(shù),過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)點(diǎn)P是橢圓上一動(dòng)點(diǎn),定點(diǎn)A1(0,2),求△F1PA1面積的最大值;
(3)已知定點(diǎn)E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點(diǎn).證明:對(duì)任意的t>0,都存在實(shí)數(shù)k,使得以線段CD為直徑的圓過(guò)E點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項(xiàng),其中a、b、c都是正數(shù),過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)A作直線交橢圓于另一點(diǎn)M,求|AM|長(zhǎng)度的最大值;
(3)已知定點(diǎn)E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點(diǎn).證明:對(duì)任意的t>0,都存在實(shí)數(shù)k,使得以線段CD為直徑的圓過(guò)E點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案