【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)當n為何值時,Sn最大,并求Sn的最大值.

【答案】解:(Ⅰ)依題意,∵a3=24,S11=0,
∴a1+2d=24,a1+55d=0,
解之得a1=40,d=﹣8,∴an=48﹣8n.
(Ⅱ)由(Ⅰ)知,a1=40,an=48﹣8n,
∴Sn= =﹣4n2+44n.
(Ⅲ)由(Ⅱ)有,Sn=﹣4n2+44n=﹣4(n﹣5.5)2+121,
故當n=5或n=6時,Sn最大,且Sn的最大值為120
【解析】(Ⅰ)分別利用等差數(shù)列的通項公式及等差數(shù)列的前n項和的公式由a3=24,S11=0表示出關于首項和公差的兩個關系式,聯(lián)立即可求出首項與公差,即可得到數(shù)列的通項公式;(Ⅱ)根據(jù)(Ⅰ)求出的首項與公差,利用等差數(shù)列的前n項和的公式即可表示出Sn;(Ⅲ)根據(jù)(2)求出的前n項和的公式得到Sn是關于n的開口向下的二次函數(shù),根據(jù)n為正整數(shù),利用二次函數(shù)求最值的方法求出Sn的最大值即可.
【考點精析】本題主要考查了等差數(shù)列的性質的相關知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】拋擲一枚骰子,當它每次落地時,向上一面的點數(shù)稱為該次拋擲的點數(shù),可隨機出現(xiàn)1到6點中的任一個結果.連續(xù)拋擲兩次,第一次拋擲的點數(shù)記為a,第二次拋擲的點數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構成三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.(
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知動點到定點的距離與到定直線的距離之比為

(1)求動點的軌跡的方程;

(2)已知為定直線上一點.

①過點的垂線交軌跡于點不在軸上),求證:直線的斜率之積是定值;

②若點的坐標為,過點作動直線交軌跡于不同兩點,線段上的點滿足,求證:點恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是計算1+ + +…+ 的值的一個程序框圖,其中判斷框內應填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C為三角形ABC的三內角,其對應邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大;
(2)若 ,b+c=4,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球內接四棱錐的高為相交于,球的表面積為,若中點.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,若點的坐標為,求的最小值.

查看答案和解析>>

同步練習冊答案