18.在△ABC中,已知AB=2,AC=3,A=60°.
(1)求△ABC的面積;
(2)求BC的長;
(3)求Sin2C的值.

分析 (1)由已知利用三角形的面積公式即可計(jì)算得解.
(2)由已知利用余弦定理即可計(jì)算得解BC的值.
(3)利用大邊對大角可求C為銳角,利用正弦定理可求sinC,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求cosC,利用二倍角的正弦函數(shù)公式可求sin2C的值.

解答 解:(1)∵AB=2,AC=3,A=60°.
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×2×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
(2)∵AB=2,AC=3,A=60°.
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{{2}^{2}+{3}^{2}-2×2×3×\frac{1}{2}}$=$\sqrt{7}$.
(3)∵AB=2,A=60°,BC=$\sqrt{7}$<AC=3,可得:C為銳角,
∴sinC=$\frac{ABsinA}{BC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$,可得:cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{2\sqrt{7}}{7}$,
∴sin2C=2sinCcosC=2×$\frac{\sqrt{21}}{7}$×$\frac{2\sqrt{7}}{7}$=$\frac{4\sqrt{3}}{7}$.

點(diǎn)評 本題主要考查了三角形的面積公式,余弦定理,大邊對大角,正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若指數(shù)函數(shù)y=ax在[-1,1]上的最大值與最小值的差是2,則底數(shù)a等于( 。
A.$\sqrt{2}+1$B.$\sqrt{2}-1$C.$\sqrt{2}±1$D.$1±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題錯(cuò)誤的是(  )
A.經(jīng)過一條直線和這條直線外的一點(diǎn),有且只有一個(gè)平面
B.經(jīng)過兩條相交直線,有且只有一個(gè)平面
C.兩個(gè)平面相交,它們只有有限個(gè)公共點(diǎn)
D.不共面的四點(diǎn)可以確定四個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}中,a3=3,a7=1,又?jǐn)?shù)列{${\frac{1}{{1+{a_n}}}$}是等差數(shù)列,則a11等于(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在區(qū)間[0,2]上任取兩個(gè)數(shù)a,b,方程x2+ax+b2=0有實(shí)數(shù)解的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{{\sqrt{2}-i}}{{1+\sqrt{2}i}}$=( 。
A.iB.-iC.$2\sqrt{2}-i$D.$-2\sqrt{2}+i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)y=f(x)在[-3,3]上是奇函數(shù),且對任意x,y都有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí),f(x)<0,f(1)=-2:
(Ⅰ)求f(2)的值;
(Ⅱ)判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)求不等式f(x-1)>4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求過點(diǎn)(3,6)被圓x2+y2=25截得線段的長為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知R為全集,A={x|log${\;}_{\frac{1}{2}}}$(3-x)≥-2},B={x|y=$\sqrt{{2^x}-1}$},求A∩B.

查看答案和解析>>

同步練習(xí)冊答案