設(shè)A(1,2),B(3,-1),C(3,4),則
AB
AC
( 。
A、11B、5C、-2D、1
考點(diǎn):平面向量數(shù)量積的運(yùn)算,平面向量的坐標(biāo)運(yùn)算
專題:計算題,平面向量及應(yīng)用
分析:運(yùn)用向量的坐標(biāo)運(yùn)算和向量的數(shù)量積的坐標(biāo)表示,計算即可得到所求值.
解答: 解:由A(1,2),B(3,-1),C(3,4),
AB
=(2,-3),
AC
=(2,2)
,
AB
AC
=2•2+(-3)•2=-2

故選C.
點(diǎn)評:本題考查向量的坐標(biāo)運(yùn)算,主要考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地通過市場調(diào)查得到西紅柿種植成本Q(單位:元/千克)與上市時間t(單位:50天)的數(shù)據(jù)如表:
時間t125
種植成本Q424
(Ⅰ)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述Q與t的變化關(guān)系,并求出函數(shù)的解析式;
Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt
(Ⅱ)利用選取的函數(shù),求西紅柿最低種植成本及此時的上市天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,側(cè)棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.
(1)求SA與CD成角;
(2)求面SCD與面SAB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點(diǎn),則
PA
PB
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠2014年第一季度生產(chǎn)的A、B、C、D四種型號的產(chǎn)品產(chǎn)量用條形圖表示如圖,現(xiàn)用分層抽樣的方法從中選取50件樣品參加四月份的一個展銷會.
(1)問A、B、C、D四種型號的產(chǎn)品中各應(yīng)抽取多少件?
(2)從50件樣品中隨機(jī)地抽取2件,求這2件產(chǎn)品恰好是不同型號產(chǎn)品的概率;
(3)從A、C型號的產(chǎn)品中隨機(jī)地抽取3件,求抽取A種型號的產(chǎn)品2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用“五點(diǎn)法”作出下列函數(shù)的簡圖,并分別說明每個函數(shù)的圖象與函數(shù)y=sinx的圖象有什么關(guān)系.
(1)y=
1
3
sinx;
(2)y=4sinx;
(3)y=sin(x+
π
6
);
(4)y=sin(x-
π
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時,f(x)=x2,當(dāng)x>0時,f(x+1)=f(x)+1,若直線y=kx與函數(shù)y=f(x)的圖象恰有9個不同的公共點(diǎn),則實(shí)數(shù)k的值為(  )
A、2
6
-2
B、2
2
-4
C、2
6
-4
D、2
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲x萬件并全部售完,每一萬件的銷售收入為R(x)萬元,且R(x)=
4400
x
-
40000
x2
,10<x<100,該公司在電飯煲的生產(chǎn)中所獲年利潤W(萬元).(注:利潤=銷售收入-成本)
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;
(2)為了讓年利潤W不低于2760萬元,求年產(chǎn)量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
2
π
x與曲線y=sinx圍成的區(qū)域面積為
 

查看答案和解析>>

同步練習(xí)冊答案