16.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(-1,n),若$\overrightarrow{a}$⊥$\overrightarrow$,則n=$\frac{1}{2}$.

分析 $\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}$•$\overrightarrow$=0,利用向量數(shù)量積的坐標(biāo)運(yùn)算得出關(guān)于n的方程求解即可.

解答 解:∵$\overrightarrow{a}$=(2,4),$\overrightarrow$=(-1,n),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴則$\overrightarrow{a}$•$\overrightarrow$=0,即2×(-1)+4n=0,解得:n=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.計(jì)算(2+3i)-(4+5i)=-2-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ+ρcosθ=m,曲線C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)寫出曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-4n+1,數(shù)列{an}的通項(xiàng)公式${a}_{n}=\left\{\begin{array}{l}{-2,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=8,則動(dòng)點(diǎn)M的軌跡是( 。
A.橢圓B.雙曲線C.線段D.兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.關(guān)于x的不等式mx2-ax-1>0(m>0)的解集可能是( 。
A.{x|x<-1或x>$\frac{1}{4}$}B.RC.{x|-$\frac{1}{3}$<x<$\frac{3}{2}$}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)總體中的100個(gè)個(gè)體的號碼分別為0,1,2,…,99,依次將其均分為10個(gè)小組,要用系統(tǒng)抽樣的方法抽取一個(gè)容量為10的樣本,規(guī)定:如果在第1組(號碼為0-9)中隨機(jī)抽取的號碼為m,那么依次錯(cuò)位地得到后面各組的號碼,即第k組中抽取的號碼的個(gè)位數(shù)字為m+k-1或m+k-11(如果m+k≥11),若第6組中抽取的號碼為52,則m為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“a>1”是“函數(shù)f(x)=x2-2ax在x∈(-∞,1)為減函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若m=4,求A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案