【題目】甲、乙兩人數(shù)學(xué)成績(jī)的莖葉圖如圖所示:

(1)求出這兩名同學(xué)的數(shù)學(xué)成績(jī)的平均數(shù)、標(biāo)準(zhǔn)差.

(2)比較兩名同學(xué)的成績(jī),談?wù)勀愕目捶ǎ?/span>

【答案】(1);(2)乙同學(xué)比甲同學(xué)的成績(jī)?cè)鷮?shí)、穩(wěn)定

【解析】 試題分析:(1)平均數(shù)等于總和除以總數(shù),先根據(jù)方差公式求方差,再開(kāi)方得標(biāo)準(zhǔn)差(2)乙同學(xué)的平均成績(jī)較高且標(biāo)準(zhǔn)差較。f(shuō)明乙同學(xué)比甲同學(xué)的成績(jī)?cè)鷮?shí)、穩(wěn)定.

試題解析:(1) (65+70+80+86+89+95+91+94+107+113)=89.

s [(65-89)2+(70-89)2+(80-89)2+(86-89)2+(89-89)2+(95-89)2+(91-89)2+(94-89)2+(107-89)2+(113-89)2]=199. 2,

所以s14. 1.

(79+86+83+88+93+99+98+98+102+114)=94.

s [(79-94)2+(86-94)2+(83-94)2+(88-94)2+(93-94)2+(99-94)2+(98-94)2+(98-94)2+(102-94)2+(114-94)2]=96. 8.

s9. 8.

(2)(1)知,<s>s乙.

所以乙同學(xué)的平均成績(jī)較高且標(biāo)準(zhǔn)差較。

說(shuō)明乙同學(xué)比甲同學(xué)的成績(jī)?cè)鷮?shí)、穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓 =1的右焦點(diǎn)F作斜率k=﹣1的直線(xiàn)交橢圓于A,B兩點(diǎn),且 共線(xiàn).
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,在下列命題中,其中正確命題的序號(hào)是.
⑴曲線(xiàn) 必存在一條與 軸平行的切線(xiàn);
⑵函數(shù) 有且僅有一個(gè)極大值,沒(méi)有極小值;
⑶若方程 有兩個(gè)不同的實(shí)根,則 的取值范圍是
⑷對(duì)任意的 ,不等式 恒成立;
⑸若 ,則 ,可以使不等式 的解集恰為 ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開(kāi)放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個(gè)結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,且數(shù)列{bn}的前n項(xiàng)和為Sn , 求S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 :直線(xiàn) 與直線(xiàn) 之間的距離不大于1,命題 :橢圓 與雙曲線(xiàn) 有相同的焦點(diǎn),則下列命題為真命題的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列 滿(mǎn)足 ,且 .
(1)寫(xiě)出 的前3項(xiàng),并猜想其通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案