已知函數(shù)f(x)=x3-3(a-1)x2-6ax,x∈R.,
(I)求函數(shù)f(x)的單調區(qū)間;
(II)當a≥0時,若函數(shù)f(x)在區(qū)間[-1,2]上是單調函數(shù),求a的取值范圍.
分析:(1)先求函數(shù)f(x)的導數(shù),根據(jù)導數(shù)大于0函數(shù)單調遞增,導數(shù)小于0時函數(shù)單調遞減可得答案.
(2)先確定函數(shù)f(x)兩個極值點的范圍,再由[-1,2]⊆[x1,x2]可得答案.
解答:解:(I)f'(x)=3x
2-6(a-1)x-6a.
由f'(x)=0解得
x1=-1+a-,
x2=-1+a+.當x∈(-∞,x
1)或x∈(x
2,+∞)時,f'(x)>0;
當x∈(x
1,x
2)時,f'(x)<0.
所以函數(shù)f(x)的單調遞增區(qū)間為(-∞,-1+a-
)和
(-1+a+,+∞)調遞減區(qū)間為
(-1+a-,-1+a+).(II)由
a≥0,知x1=-1+a-=-1-(-a)<-1,
x2=-1+a+=a+(-1)>0,
則函數(shù)f(x)在[-1,2]上是單調函數(shù)
當且僅當[-1,2]⊆[x
1,x
2],?(9分)
即x2=a-1+≥2,解得a≥.故a的取值范圍是
[,+∞). 點評:本題主要考查函數(shù)單調性與其導函數(shù)的正負之間的關系,即當導函數(shù)大于0時原函數(shù)單調遞增,當導函數(shù)小于0時原函數(shù)單調遞減.