某慈善機構舉辦一次募捐演出,有一萬人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動.第一輪抽獎從這一萬張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎者獨立操作按鈕,電腦隨機產(chǎn)生兩個數(shù)x,y(x,y∈{1,2,3}),隨即按如下所示程序框圖運行相應程序.若電腦顯示“中獎”,則抽獎者獲得9000元獎金;若電腦顯示“謝謝”,則不中獎.
(Ⅰ)已知小曹在第一輪抽獎中被抽中,求小曹在第二輪抽獎中獲獎的概率;
(Ⅱ)若小葉參加了此次活動,求小葉參加此次活動收入(含門票)的期望.
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:(Ⅰ)從1,2,3三個數(shù)字中有重復取2個數(shù)字,列出所有的基本事件共9個,設“小曹在第二輪抽獎中獲獎”為事件A,求出事件A所包含的基本事件2個,利用古典概型求出概率即可.
(Ⅱ)設小葉參加此次活動的收益為ξ,ξ的可能取值為-100,900,9900.求出概率,列出分布列,然后利用期望公式求解即可.
解答: 解:(Ⅰ)從1,2,3三個數(shù)字中有重復取2個數(shù)字,其基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)
共9個,設“小曹在第二輪抽獎中獲獎”為事件A,且事件A所包含的基本事件有(3,1),(3,3)共2個,∴P(A)=
2
9

(Ⅱ)設小葉參加此次活動的收益為ξ,ξ的可能取值為-100,900,9900.P(ξ=-100)=
999
1000
,P(ξ=900)=
1
1000
7
9
=
7
9000
,P(ξ=9900)=
1
1000
2
9
=
2
9000

∴ξ的分布列為
ξ-1009009900
P
999
1000
7
9000
2
9000
Eξ=-100×
999
1000
+900×
7
9000
+9900×
2
9000
=-97
點評:本題考查程序框圖的應用,離散型隨機變量的分布列以及期望的求法,古典概型概率的求法,是課改地區(qū)高考?碱}型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在一塊傾斜放置的矩形木塊上釘著一個形如“等腰三角形”的五行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙…第5行6個鐵釘之間有5個空隙(如圖).某人將一個玻璃球從第1行的空隙向下滾動,玻璃球碰到第2行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙,以后玻璃球按類似方式繼續(xù)往下滾動,落入第5行的某一個空隙后,掉入木板下方相應的球槽.玻璃球落入不同球槽得到的分數(shù)ξ如圖所示.
(Ⅰ)求Eξ;
(Ⅱ)若此人進行4次相同試驗,求至少3次獲得4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:若xy≠4,則x≠1或y≠4,命題q:對任意實數(shù)x有x2-x+1>0,則( 。
A、“p或¬q”為假命題
B、“¬p且q”為真命題
C、“¬p或q”為假命題
D、“p且q”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

奇函數(shù)f(x)(x≠0)在(0,+∞)上為增函數(shù),且f(1)=0.那么不等式f(x-1)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=2x-1},集合B={x|y=log3(x2-2)},則集合A∩B=( 。
A、{x|x>1}
B、{x|x<-
2
或x>
2
}
C、{x|x>
2
}
D、{x|x<-
2
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設U=R,M={x|x2-x≤0},函數(shù)f(x)=
1
x-1
的定義域為N,則M∩(∁UN)=(  )
A、[0,1)B、[0,1]
C、(0,1)D、{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax,a∈R.
(Ⅰ)若曲線y=f(x)在任意點處的切線的傾斜角都是銳角,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)在區(qū)間(
1
e
,e)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+b)x2+(ab-2)x+c
的極大值和極小值點分別為α、β,則a、b、α、β的大小關系可能為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓過點(0,1)且離心率e=
3
2

(1)求橢圓C的標準方程;
(2)A、B是橢圓上兩點,且關于x軸對稱,E是橢圓上不同于A、B的一點,且直線BE、AE分別交x軸于點P、Q,求證|OQ|•|OP|是定值.

查看答案和解析>>

同步練習冊答案