精英家教網 > 高中數學 > 題目詳情

【題目】為奇函數,為常數.

1)求的值;

2)判斷函數上的單調性,并說明理由;

3)若對于區(qū)間上的每一個值,不等式恒成立,求實數的取值范圍.

【答案】(1);(2)增函數,見解析;(3).

【解析】

1)由奇函數的定義求得a值,

2)根據單調性的定義及復合函數單調性的判定方法可判斷fx)的單調性;

3)不等式fx恒成立,等價于fxm恒成立,構造函數gx)=fxx,轉化為求函數gx)在上的最值問題即可解決.

1)∵為奇函數,

對定義域內的任意都成立,

,

解得(舍去).

2)函數上單調遞增,理由如下

由(1)知,∵中,

的內函數上為減函數,

外函數為減函數,

上為增函數

上為增函數,

上為增函數,

3)令,,∵上是減函數,

∴由(2)知,,是增函數,∴,

∵對于區(qū)間上的每一個值,不等式恒成立,

恒成立,∴.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從4名男生和2名女生中任選3人參加演講比賽,設隨機變量ξ表示所選3人中女生的人數.

(1)求所選3人中女生人數ξ≤1的概率;

(2)求ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】確定下列各值的符號.

1;

2;

3;

4

5;

6.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}的各項均為不等于1的正數,數列{bn}滿足bn=lgan,b3=18,b6=12,則數列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,進而求得qa1,根據{an}為正項等比數列推知{bn}為等差數列,進而得出數列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數,根據其單調性進而求得Sn的最大值.

由題意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,則a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}為正項等比數列,

∴{bn}為等差數列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=,∵nN*,故n=1112時,(Snmax=132.

故答案為:C.

【點睛】

這個題目考查的是等比數列的性質和應用;解決等差等比數列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數列的性質解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關系,也可以通過這個發(fā)現規(guī)律。

型】單選題
束】
12

【題目】已知數列是遞增數列,且對,都有,則實數的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數圖象相鄰兩條對稱軸之間的距離為,將函數的圖象向左平移個單位,得到的圖象關于軸對稱,則( )

A. 函數的周期為 B. 函數圖象關于點對稱

C. 函數圖象關于直線對稱 D. 函數上單調

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】找一組數據作為總體,自行設定樣本量,進行多次簡單隨機抽樣.觀察樣本量對估計總體平均數的影響,并試著解釋其中的原因.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在函數的定義域內存在區(qū)間,使得函數在區(qū)間上為減函數,求實數的取值范圍;

(2)當時,若曲線 在點處的切線與曲線有且只有一個公共點,求的值或取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發(fā)芽數,得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(顆)

38

30

24

41

17

利用散點圖,可知線性相關。

(1)求出關于的線性回歸方程,若4月6日星夜溫差,請根據你求得的線性同歸方程預測4月6日這一天實驗室每100顆種子中發(fā)芽顆數;

(2)若從4月1日 4月5日的五組實驗數據中選取2組數據,求這兩組恰好是不相鄰兩天數據的概率.

(公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當時,求曲線在點處的切線方程;

(2)求函數f(x)的極值.

查看答案和解析>>

同步練習冊答案