(本題滿分10分)
若直線過點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.

x=0或y=3或。

解析試題分析:直線與拋物線有一個(gè)公共點(diǎn)分兩種情況,一是與對稱軸平行,另一種情況是直線與拋物線相切,直線與拋物線相切時(shí),把它們的方程聯(lián)立消去y后得到關(guān)于x的一元二次方程利用判別式等于零,求出斜率的值.
若直線l的斜率不存在,則直線l的方程為x=0,滿足條件…………2分;
當(dāng)直線l的斜率存在,不妨設(shè)l:y=kx+3,代入y2 =2x,得:k2x2 +(6k-2)x+9=0……4分;
有條件知,當(dāng)k=0時(shí),即:直線y=3與拋物線有一個(gè)交點(diǎn)……………6分;
當(dāng)k≠0時(shí),由△=(6k-2)2 -4×9×k2=0,解得:k=,則直線方程為……9分;
故滿足條件的直線方程為:x=0或y=3或…………………10分.
考點(diǎn):直線與拋物線的位置關(guān)系.
點(diǎn)評(píng):直線與拋物線有一個(gè)公共點(diǎn)有兩種情況,一是與對稱軸平行,另一種情況是直線與拋物線相切,我們在求解時(shí)容易忽略與對稱軸平行這種情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線使得與橢圓都只有一個(gè)交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,求拋物線的方程和m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題10分)已知,動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡是曲線,直線與曲線交于兩點(diǎn).(1)求曲線的方程;
(2)若,求實(shí)數(shù)的值;
(3)過點(diǎn)作直線垂直,且直線與曲線交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,直線:y=x+m
(1)若與橢圓有一個(gè)公共點(diǎn),求的值;
(2)若與橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知拋物線的頂點(diǎn)是雙曲線的中心,而焦點(diǎn)是雙曲線的頂點(diǎn),求拋物線的方程.

查看答案和解析>>

同步練習(xí)冊答案