已知函數(shù)f(x)=
x+3(x≤1)
-x2+2x+3(x>1)
,g(x)=3x,這兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù)為
 
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題考查的知識(shí)點(diǎn)是指數(shù)函數(shù)的圖象,要求函數(shù)y=f(x)的圖象與函數(shù)y=3x的圖象的交點(diǎn)個(gè)數(shù),我們畫出函數(shù)的圖象后,利用數(shù)形結(jié)合思想,易得到答案
解答: 解:在同一坐標(biāo)系下,畫出函數(shù)y=f(x)的圖象與函數(shù)y=3x的圖象如下圖:

由圖可知,兩個(gè)函數(shù)圖象共有2個(gè)交點(diǎn)
故答案為:2
點(diǎn)評(píng):求兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù),我們可以使用數(shù)形結(jié)合的思想,在同一坐標(biāo)系中,做出兩個(gè)函數(shù)的圖象,分析圖象后,即可等到答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R.
(1)求函數(shù)f(x)的周期和最小值及取得最小值時(shí)的x的集合;
(2)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域;
(3)在銳角△ABC中,若f(A)=1,
AB
AC
=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),且x>0時(shí),f(x)=x(1+x3),則x<0時(shí),f(x)=(  )
A、x(1-x3
B、-x(1+x3
C、-x(1-x3
D、x(1+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=ax2(其中a>0)上任意一點(diǎn)與點(diǎn)P(0,
1
4a
)的距離等于它到直線y=-1的距離.
(I)求拋物線的方程;
(Ⅱ)若點(diǎn)M的坐標(biāo)為(0,2),N為拋物線上任意一點(diǎn),是否存在垂直于y軸的直線l,使直線l被以MN為直徑的圓截得的弦長恒為常數(shù)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2cos(2x+
π
3
)+4
3
sinxcosx+1.
(Ⅰ)若f(x)的定義域?yàn)?span id="moaqa4m" class="MathJye">[
π
12
,
π
2
],求f(x)的值域;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C所對(duì)邊,當(dāng)f(A)=2,b+c=2時(shí),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x,y的不等式組
x+y-2<0
x+a>0
y-a>0
所表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)滿足x0+2y0<1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則直線ax+by+1=0必過定點(diǎn)( 。
A、(
1
3
,
1
2
)
B、(
1
2
,
1
3
)
C、(-
1
3
,-
1
2
)
D、(-
1
2
,-
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足:2Sn2=an(2Sn-1).
(Ⅰ)求證:數(shù)列{
1
Sn
}
是等差數(shù)列,并用n表示Sn;
(Ⅱ)令bn=
Sn
2n+1
,數(shù)列{bn}的前n項(xiàng)和為Tn.求使得2Tn(2n+1)≤m(n2+3)對(duì)所有n∈N*都成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)=
 

查看答案和解析>>

同步練習(xí)冊答案