4.已知點(diǎn)P(-1,$\frac{3}{2}$)是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A,B是橢圓E上兩個(gè)動(dòng)點(diǎn),滿足:$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ$\overrightarrow{PO}$(0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.

分析 (Ⅰ)由PF1⊥x軸,求出2a=|PF1|+|PF2|=4,由此能求出橢圓E的方程.
(2)設(shè)A(x1,y1)、B(x2,y2),由 $\overrightarrow{PA}$+$\overrightarrow{PB}$=λ$\overrightarrow{PO}$(0<λ<4,且λ≠2),得x1+x2=λ-2,y1+y2=$\frac{3}{2}$(2-λ),再由3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,由此能求出AB的斜率.
(3)設(shè)直線AB的方程為y=$\frac{1}{2}$x+t,與3x2+4y2=12聯(lián)立得 x2+tx+t2-3=0,由此利用根的判別式、弦長(zhǎng)公式、點(diǎn)到直線距離公式、三角形面積公式,求出△PAB的面積為S=$\frac{\sqrt{3}}{2}$×$\sqrt{4-{t}^{2}}$|t-2|,設(shè)f(t)=S2=-$\frac{3}{4}$(t4-4t3+16t-16)(-2<t<2),求出f′(t)=-3(t+1)(t-2)2,由f′(t)=0及-2<t<2得t=-1.由此能求出結(jié)果.

解答 解:(Ⅰ)∵PF1⊥x軸,∴F1(-1,0),c=1,F(xiàn)2(1,0),
∴|PF2|=$\sqrt{{2}^{2}+(\frac{3}{2})^{2}}$=$\frac{5}{2}$,∴2a=|PF1|+|PF2|=4,∴a=2,∴b2=3,
∴橢圓E的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.…(3分)
(2)證明:設(shè)A(x1,y1)、B(x2,y2),
由 $\overrightarrow{PA}$+$\overrightarrow{PB}$=λ$\overrightarrow{PO}$(0<λ<4,且λ≠2),得(x1+1,y1-$\frac{3}{2}$)+(x2+1,y2-$\frac{3}{2}$)=λ(1,-$\frac{3}{2}$),
∴x1+x2=λ-2,y1+y2=$\frac{3}{2}$(2-λ)…①…(5分)
又$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1}\\{\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1}\end{array}\right.$,兩式相減得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0…..②
以①式代入可得AB的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$.…(8分)
(3)設(shè)直線AB的方程為y=$\frac{1}{2}$x+t,與3x2+4y2=12聯(lián)立消去y并整理得 x2+tx+t2-3=0,△=3(4-t2),
|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{1}{4}}$×$\sqrt{3(4-{t}^{2})}$=$\frac{\sqrt{15}}{2}×\sqrt{4-{t}^{2}}$,
點(diǎn)P到直線AB的距離為d=$\frac{2|t-2|}{\sqrt{5}}$,
△PAB的面積為S=$\frac{1}{2}$|AB|×d=$\frac{\sqrt{3}}{2}$×$\sqrt{4-{t}^{2}}$|t-2|,…(10分)
設(shè)f(t)=S2=-$\frac{3}{4}$(t4-4t3+16t-16)(-2<t<2),
f′(t)=-3(t3-3t2+4)=-3(t+1)(t-2)2,由f′(t)=0及-2<t<2得t=-1.
當(dāng)t∈(-2,-1)時(shí),f′(t)>0,
當(dāng)t∈(-1,2)時(shí),f′(t)<0,f(t)=-1時(shí)取得最大值$\frac{81}{4}$,
所以S的最大值為$\frac{9}{2}$.
此時(shí)x1+x2=-t=1=λ-2,λ=3.…(12分)

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查直線的斜率的求法,考查三角形面積的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓、直線、導(dǎo)數(shù)等知識(shí)點(diǎn)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x-2a,x<2\\{log_a}x,x≥2\end{array}\right.$在R上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是$[\frac{{\sqrt{2}}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,則cos(π-2α)=( 。
A.$\frac{2}{9}$B.$\frac{5}{9}$C.$-\frac{2}{9}$D.$-\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.經(jīng)過雙曲線的左焦點(diǎn)F1作傾斜角為30°的直線,與雙曲線的右支交于點(diǎn)P,若以PF1為直徑的圓恰好經(jīng)過雙曲線的右焦點(diǎn),則雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)( 。
A.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增B.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞減
C.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增D.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax(e自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)討論關(guān)于x的方程f(x)=a的根的個(gè)數(shù);
(3)若a≥1,當(dāng)xf(x)≥x3-$\frac{5a+3}{2}$x2+3ax-1+m對(duì)任意x∈[0,+∞)恒成立時(shí),m的最大值為1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,點(diǎn)E是PB的中點(diǎn),點(diǎn)F在邊BC上移動(dòng).
(Ⅰ)若F為BC中點(diǎn),求證:EF∥平面PAC;
(Ⅱ)求證:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么數(shù)學(xué)就沒有什么問題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī)?nèi)绫?
  1 2 3 4 5
 物理成績(jī) 90 85 74 68 63
 數(shù)學(xué)成績(jī) 130 125 110 95 90
(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程$\widehat{y}$=$\widehat$x+a($\widehat$精確到0.1),若某位同學(xué)的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的五位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選出的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120-分的概率.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-b$\overline{x}$)
(參考數(shù)據(jù):902+852+742+682+632=29394)
90×130+85×125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩焦點(diǎn),若橢圓C上的點(diǎn)A(0,$\sqrt{3}$)到F1,F(xiàn)2兩點(diǎn)的距離之和為4,
(1)求橢圓C的方程;
(2)求橢圓C的短軸長(zhǎng)和焦距.

查看答案和解析>>

同步練習(xí)冊(cè)答案