已知函數(shù)f(x)=
2x-1
x+1
,x∈[3,5]
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)求函數(shù)f(x)的最大值和最小值.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專題:
分析:利用函數(shù)的單調(diào)性的定義證明其單調(diào)性,借助單調(diào)性求函數(shù)的最大值和最小值.
解答: 解:(1)設(shè)任意的x1,x2,且3≤x1≤x2≤5,
∴x1-x20(x2+1)>0,
∴f(x1)-f(x2)<0,⇒f(x1)<f(x2
∴函數(shù)f(x)=
2x-1
x+1
,x∈[3,5]是增函數(shù);
(2)由(1)知函數(shù)f(x)=
2x-1
x+1
,x∈[3,5]是增函數(shù);
故當(dāng)x=1時,ymin=
5
4
;當(dāng)x=5時,ymax=
3
2
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性和最值的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}共有2k項(整數(shù)k≥2),數(shù)列{an}的前n項的和為Sn,滿足a1=2,an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常數(shù)a>1,求證{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4個.現(xiàn)從中隨機(jī)取球,每次只取一球.
(1)若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;
(2)若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達(dá)到五次就終止游戲,記游戲結(jié)束時一共取球X次,求隨機(jī)變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=t與函數(shù)y=x3-3x的圖象有三個公共點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試用分析法證明不等式;
3
+
5
2
+
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為l的正方形,側(cè)棱AA1=2.
(1)求證:C1D∥平面ABB1A1;
(2)求直線BD1與平面A1C1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,a1×a9=64,a3+a7=20,求a11的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項和Sn滿足Sn2-anSn+2an=0.
(1)求an
(2)若bn=2n-1,記{
1
bnSn
}前n項和為Tn,求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式C8x-1>3C8x的解集為
 

查看答案和解析>>

同步練習(xí)冊答案