已知直線l過(guò)點(diǎn)P(3,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),如圖表所示,則△ABO的面積的最小值為
 
考點(diǎn):直線的截距式方程
專題:直線與圓
分析:寫(xiě)出直線方程的截距式,代入的坐標(biāo),利用基本不等式求得使△ABO的面積取最小值時(shí)直線在兩坐標(biāo)軸上的截距,代入三角形的面積公式得答案.
解答: 解:設(shè)直線l的方程為
x
a
+
y
b
=1(a>0,b>0)
,
∵直線l過(guò)點(diǎn)P(3,2),
3
a
+
2
b
=1
,
∴1=
3
a
+
2
b
≥2
6
ab
,則ab≥24,
當(dāng)且僅當(dāng)
3
a
=
2
b
=
1
2
,即a=6,b=4時(shí)上式等號(hào)成立.
∴△ABO的面積的最小值為
1
2
ab=
1
2
×24=12

故答案為:12.
點(diǎn)評(píng):本題考查了直線的截距式方程,考查了利用基本不等式求最值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足
(a-1)2
+
(a-6)2
=10-|b+3|-|b-2|,則a2+b2的最大值為(  )
A、45B、50C、40D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足條件:a1=0,an+1=an+(2n-1).
(1)寫(xiě)出數(shù)列{an}的前5項(xiàng);
(2)由前5項(xiàng)歸納出該數(shù)列的一個(gè)通項(xiàng)公式.(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P在曲線y=e2x上,點(diǎn)Q在直線y=2x-3上,則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足
y-1≥0
2x-y-1≥0
x+y≤m
,若目標(biāo)函數(shù)z=x-y的最小值為-2,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+1,那么f(x-1)等于( 。
A、x
B、x2-2x
C、x2
D、x2-2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列不等關(guān)系中,正確的是(  )
A、(
1
2
 
2
3
<1<(
1
2
 
1
3
B、(
1
2
 
1
3
<(
1
2
 
2
3
<1
C、1<(
1
2
 
1
3
<(
1
2
 
2
3
D、(
1
2
 
2
3
<(
1
2
 
1
3
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x+
1
x
(x>0)的最小值為( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1的斜率為-
1
2
,直線l1⊥l2,則l2的斜率為( 。
A、-
1
2
B、1
C、
3
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案