已知cosα=
1
7
,cos(α+β)=-
11
14
,且α∈(0,
π
2
),α+β∈(
π
2
,π),則cosβ的值為
 
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:由題意分別可得sinα和sin(α+β)的值,而cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα,代入計(jì)算可得.
解答: 解:∵cosα=
1
7
且α∈(0,
π
2
),
∴sinα=
1-cos2α
=
4
3
7
,
又∵cos(α+β)=-
11
14
且α+β∈(
π
2
,π),
∴sin(α+β)=
1-cos2(α+β)
=
5
3
14
,
∴cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα
=-
11
14
×
1
7
+
5
3
14
×
4
3
7
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù)公式,整體法是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求函數(shù)f(x)圖象的對(duì)稱軸方程;
(Ⅱ)設(shè)△ABC的三個(gè)角A,B,C所對(duì)的邊分別是a,b,c,且f(B)=3,b=3,求a•c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算*:x*y=x(1-y),則不等式(x-1)*(x+2)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年1月8日是傳統(tǒng)的臘八節(jié),大家開(kāi)始購(gòu)買年貨,某淘寶網(wǎng)店趁勢(shì)推出“搶紅包”的促銷活動(dòng),已知每人有5次搶紅包的機(jī)會(huì),每次可得1至30元不等的紅包,甲、乙二人在這5次搶紅包活動(dòng)中獲得紅包金額的莖葉圖如圖所示,若甲5次獲得紅包金額的均值為
.
x1
,乙5次獲得紅包金額的均值為
x2
,則
.
x1
-
.
x2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校計(jì)劃利用周五下午第一,二,三節(jié)課舉辦語(yǔ)文,數(shù)學(xué),英語(yǔ),理科綜合4門(mén)課程的專題講座,每科一節(jié)課,每節(jié)可同時(shí)在兩個(gè)教室安排兩個(gè)不同的講座,且數(shù)學(xué)和理科綜合,語(yǔ)文和英語(yǔ)不安排在同一節(jié)課進(jìn)行,則不同的安排方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)三棱錐的三視圖如圖所示,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a+i=
b+i
i
,其中i為虛數(shù)單位,a,b為實(shí)數(shù),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

非零向量
a
,
b
滿足|
a
|=|
b
|=
3
3
|
a
+
b
|,則
a
b
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果實(shí)數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么z=-2x+y的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案