已知數(shù)列的前n項和
(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列
是等差數(shù)列,并求數(shù)列
的通項公式;
(Ⅱ)令,
,求
.
(1)(2)
【解析】
試題分析:(I)在中,令n=1,可得
,
即,
---2分
當(dāng)時,
,
.
又因為,所以
,即當(dāng)
時,
.
又數(shù)列
是首項和公差均為1的等差數(shù)列.
---4分
于是.
---6分
(II)由(I)得,所以
---8分
由①-②得
---12分
考點:本小題主要考查由已知式子再寫一個作差得遞推關(guān)系式,進(jìn)而求通項公式,和利用錯位相減法求數(shù)列的前n項的和.
點評:由已知式子再寫一個作差時,要注意n的取值范圍;利用錯位相減法求數(shù)列的前n項和時,方法不難,但是化簡容易出錯,必須認(rèn)真計算,此處知識在高考中經(jīng)�?疾�.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
bnbn+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省高三第三次大考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知數(shù)列的前n項和為
等差數(shù)列
,又
成等比數(shù)列.
(I)求數(shù)列、
的通項公式;
(II)求數(shù)列的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省皖南八校高三第三次聯(lián)考理科數(shù)學(xué)卷 題型:解答題
已知數(shù)列的前n項和為
(I)求的通項公式;
(II)數(shù)列,求數(shù)列
的前n項和
;
(III)若對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍。
查看答案和解析>>