5.三棱錐P-ABC,AB=BC=$\sqrt{15}$,AC=6,PC垂直于平面ABC,PC=2,則該三棱錐外接球的表面積$\frac{83}{2}$.

分析 根據(jù)已知條件得出△ABC的外接圓的半徑,利用勾股定理得出外接球的半徑,即可求出三棱錐的外接球表面積.

解答 解:∵AB=BC=$\sqrt{15}$,AC=6,
∴cosC=$\frac{3}{\sqrt{15}}$,∴sinC=$\frac{\sqrt{6}}{\sqrt{15}}$,
∴△ABC的外接圓的半徑=$\frac{\sqrt{15}}{2•\frac{\sqrt{6}}{\sqrt{15}}}$=$\frac{5\sqrt{6}}{4}$,
設三棱錐的外接球的球心到平面ABC的距離為d,
則R2=d2+($\frac{5\sqrt{6}}{4}$)2=(2-d)2+($\frac{5\sqrt{6}}{4}$)2,
∴該三棱錐的外接球半徑為R2=$\frac{83}{8}$,表面積為:4πR2=4π×$\frac{83}{8}$=$\frac{83}{2}$π,
故答案為:$\frac{83}{2}$.

點評 本題綜合考查了空間幾何體的性質(zhì),考查三棱錐的外接球表面積,正確求出三棱錐的外接球半徑是關(guān)鍵,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.將5名學生分配到3個不同的社區(qū)參加社會實踐活動,每個社區(qū)至少分配一名學生的方案種數(shù)為150.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,則(  )
A.x=0為f(x)的極大值點B.x=2為f(x)的極大值點
C.x=1為f(x)的極小值點D.x=1為f(x)的極大值點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.曲線C1參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\\ y=3sinφ\end{array}$(φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建極坐標系,曲線C2的極坐標方程是ρ=2,正方形ABCD的頂點都在C2上,且A、B、C、D按逆時針次序排列,點A極坐標為(2,$\frac{π}{3}$)
(1)求點A、B、C、D的直角坐標
(2)設P為C1上任意一點,求|PA|2+|PC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=-x2-4x+5,其在x∈[3,5]上的最大值為-16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)已知a,b為正實數(shù).求證:$\frac{{a}^{2}}$+$\frac{^{2}}{a}$≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1,,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.一物體在力F(x)=3x2-2x+3的作用下沿與力F(x)相同的方向由x=1m運動到x=5m時F(x)做的功為112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.球O的表面上有3個點A、B、C,且∠AOB=∠BOC=∠COA=$\frac{π}{2}$,△ABC的外接圓半徑為1,則該球的表面積為(  )
A.B.10πC.12πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在直角坐標系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(其中α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,射線θ=β和θ=β-$\frac{π}{3}$(0<β<$\frac{π}{2}$)與圓C分別異于極點O的A,B兩點.
(1)求圓C的極坐標方程;
(2)求|OA|+|OB|的最大值.

查看答案和解析>>

同步練習冊答案