在正方體ABCDA1B1C1D1中,EF是分別是棱A1B1、A1D1的中點(diǎn),則A1BEF所成角的大小為__________
如圖所示,在正方體ABCDA1B1C1D1中,連接D1B1,A1D,DB,因?yàn)镋F//D1B1,D1B1//DB,因?yàn)锳1B=A1D=DB,所以A1BD是等邊三角形,即A1BEF所成角的為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是______°;直線A1B和平面A1B1CD所成的角是_________°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1 B1 C1 D1中,BB1與平面ACD1所成角的余弦值為   (       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體中,如圖E、F分別是 ,CD的中點(diǎn),
(1)求證:平面ADE;
(2)cos.        
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,分別是正方形、的中點(diǎn),交于點(diǎn),、都垂直于平面,且, ,是線段上一動(dòng)點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,試求的值;
(Ⅲ)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面,四邊形是正方形, ,點(diǎn)、、分別為線段、的中點(diǎn).
(1)求異面直線所成角的余弦值;
(2)在線段上是否存在一點(diǎn),使得點(diǎn)到平面的距離恰為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖在正方體ABCD-A1B1C1D1中,求直線與AC的夾角_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,則異面直線所成的角是            
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點(diǎn)E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個(gè)點(diǎn)E使得BE⊥CE時(shí),二面角E—BC—A正切值的大小。

查看答案和解析>>

同步練習(xí)冊答案